- Python:Data Analytics and Visualization
- Phuong Vo.T.H Martin Czygan Ashish Kumar Kirthi Raman
- 191字
- 2021-07-09 18:51:37
Linear algebra with NumPy
Linear algebra is a branch of mathematics concerned with vector spaces and the mappings between those spaces. NumPy has a package called linalg that supports powerful linear algebra functions. We can use these functions to find eigenvalues and eigenvectors or to perform singular value decomposition:
>>> A = np.array([[1, 4, 6], [5, 2, 2], [-1, 6, 8]]) >>> w, v = np.linalg.eig(A) >>> w # eigenvalues array([-0.111 + 1.5756j, -0.111 – 1.5756j, 11.222+0.j]) >>> v # eigenvector array([[-0.0981 + 0.2726j, -0.0981 – 0.2726j, 0.5764+0.j], [0.7683+0.j, 0.7683-0.j, 0.4591+0.j], [-0.5656 – 0.0762j, -0.5656 + 0.00763j, 0.6759+0.j]])
The function is implemented using the geev Lapack routines that compute the eigenvalues and eigenvectors of general square matrices.
Another common problem is solving linear systems such as Ax = b
with A
as a matrix and x
and b
as vectors. The problem can be solved easily using the numpy.linalg.solve
function:
>>> A = np.array([[1, 4, 6], [5, 2, 2], [-1, 6, 8]]) >>> b = np.array([[1], [2], [3]]) >>> x = np.linalg.solve(A, b) >>> x array([[-1.77635e-16], [2.5], [-1.5]])
The following table will summarise some commonly used functions in the numpy.linalg
package:

推薦閱讀
- 高效能辦公必修課:Word圖文處理
- 走入IBM小型機世界
- 現代機械運動控制技術
- 基于ARM 32位高速嵌入式微控制器
- Chef:Powerful Infrastructure Automation
- Windows Server 2008 R2活動目錄內幕
- Citrix? XenDesktop? 7 Cookbook
- Introduction to R for Business Intelligence
- 空間機器人智能感知技術
- 運動控制系統(第2版)
- 中國戰略性新興產業研究與發展·數控系統
- 樂高創意機器人教程(中級 上冊 10~16歲) (青少年iCAN+創新創意實踐指導叢書)
- Oracle 11g基礎與提高
- Flash 8中文版全程自學手冊
- TensorFlow 2.0卷積神經網絡實戰