舉報

會員
R Machine Learning By Example
最新章節:
Index
Ifyouareinterestedinminingusefulinformationfromdatausingstate-of-the-arttechniquestomakedata-drivendecisions,thisisago-toguideforyou.Nopriorexperiencewithdatascienceisrequired,althoughbasicknowledgeofRishighlydesirable.Priorknowledgeinmachinelearningwouldbehelpfulbutisnotnecessary.
目錄(72章)
倒序
- 封面
- 版權信息
- Credits
- About the Authors
- About the Reviewer
- www.PacktPub.com
- Preface
- Downloading the color images of this book
- Chapter 1. Getting Started with R and Machine Learning
- Delving into the basics of R
- Data structures in R
- Working with functions
- Controlling code flow
- Advanced constructs
- Next steps with R
- Machine learning basics
- Summary
- Chapter 2. Let's Help Machines Learn
- Understanding machine learning
- Algorithms in machine learning
- Families of algorithms
- Summary
- Chapter 3. Predicting Customer Shopping Trends with Market Basket Analysis
- Detecting and predicting trends
- Market basket analysis
- Evaluating a product contingency matrix
- Frequent itemset generation
- Association rule mining
- Summary
- Chapter 4. Building a Product Recommendation System
- Understanding recommendation systems
- Issues with recommendation systems
- Collaborative filters
- Building a recommender engine
- Production ready recommender engines
- Summary
- Chapter 5. Credit Risk Detection and Prediction – Descriptive Analytics
- Types of analytics
- Our next challenge
- What is credit risk?
- Getting the data
- Data preprocessing
- Data analysis and transformation
- Next steps
- Summary
- Chapter 6. Credit Risk Detection and Prediction – Predictive Analytics
- Predictive analytics
- How to predict credit risk
- Important concepts in predictive modeling
- Getting the data
- Data preprocessing
- Feature selection
- Modeling using logistic regression
- Modeling using support vector machines
- Modeling using decision trees
- Modeling using random forests
- Modeling using neural networks
- Model comparison and selection
- Summary
- Chapter 7. Social Media Analysis – Analyzing Twitter Data
- Social networks (Twitter)
- Data mining @social networks
- Getting started with Twitter APIs
- Twitter data mining
- Challenges with social network data mining
- References
- Summary
- Chapter 8. Sentiment Analysis of Twitter Data
- Understanding Sentiment Analysis
- Sentiment analysis upon Tweets
- Summary
- Index 更新時間:2021-07-09 19:34:36
推薦閱讀
- Div+CSS 3.0網頁布局案例精粹
- 計算機圖形學
- 來吧!帶你玩轉Excel VBA
- Julia 1.0 Programming
- 工業機器人現場編程(FANUC)
- CentOS 8 Essentials
- Splunk Operational Intelligence Cookbook
- 人工智能趣味入門:光環板程序設計
- 中國戰略性新興產業研究與發展·增材制造
- Applied Data Visualization with R and ggplot2
- Apache源代碼全景分析(第1卷):體系結構與核心模塊
- Introduction to R for Business Intelligence
- 生物3D打印:從醫療輔具制造到細胞打印
- 經典Java EE企業應用實戰
- Cortex-M3嵌入式處理器原理與應用
- 人工智能:智能人機交互
- Eclipse RCP應用系統開發方法與實戰
- C# 2.0實例自學手冊
- Learning VMware App Volumes
- 寫給數據產品經理新人的工作筆記
- Data Visualization with D3.js Cookbook
- Google Cloud Platform Administration
- Cloud-Native Continuous Integration and Delivery
- Mastering PostgreSQL 9.6
- 人,機,生活
- Mastering PostGIS
- Photoshop修圖實用速查通典
- 可編程控制器基礎及應用
- 數據處理與深度學習
- 機器學習