1.3 電路的基本物理量
1.3.1 電流與電壓
在電路理論中,電流i(t)、電壓u(t)、電荷q(t)和磁通Φ(t)是四個基本的物理變量。以此為基礎,又經常用功率p(t)和能量W(t)來反映電路的功能傳遞情況。這里分別加以介紹。
1. 電荷與電流
大家知道,帶電粒子的規則移動形成電流。電流的大小或強弱,取決于導體中電荷量的變化。通常,把單位時間內通過導體橫截面的電荷量定義為電流i(t),即

式中,若電荷量的單位為庫[侖](C),時間的單位為秒(s),則電流的單位為安[培](A)。習慣上把正電荷運動的方向規定為電流的方向。
相應地,若已知電流i(t),則在t時刻,通過導體的總電荷為

若電流的數值和方向均不隨時間變化,則稱為恒定電流或直流;若電流的數值和方向隨時間變化,則稱為時變電流。上式中積分變量寫為x是為了區別積分上限t。
在復雜電路中,某一支路的電流真實方向有時難以確定。為了方便,引入電流參考方向的概念。即在分析電路之前,先任意假設各支路電流的方向,這個方向稱為參考方向。依據這些假設,若求解的電流為正值,說明實際方向與參考方向一致;電流為負值,說明實際方向與所標的參考方向相反。如圖1-3所示,若i1=1 A,說明標示的參考方向就是i1的實際方向;若i2=-2 A,說明i2的實際方向與所標的參考方向相反。若電路中不標出參考方向,則電流的正、負毫無意義。今后如無說明,一律使用參考方向。

圖1-3 電流的參考方向
2. 電壓與磁通
電路中兩點間的電壓又稱為該兩點的電位差。從能量的觀點來說,將單位正電荷從a點移動到b點其能量的得失量定義為這兩點間的電壓u(t),即

式中,若能量的單位為焦[耳](J),電荷量的單位為庫[侖](C),則電壓的單位為伏[特](V)。
另一方面,若導體上穿過的磁通為Φ(t),根據電磁感應定律,則導體兩端的電壓為

相應地,有

在電路分析中,有時要正確地判斷出任意兩點的電位高低也是很困難的。為了方便,也像電流一樣,引入電壓參考方向的概念。即在電路中任意假設兩點間電壓的正、負極性,如圖1-4 所示,若求解結果u1為正,說明該電壓的實際方向(或實際極性)與圖中標示的相同。因此,有了電壓參考方向及電壓的正、負值,就可以確定任意時刻兩點間電壓的真實極性了。

圖1-4 電壓的假設極性
順便指出,電流i和電壓u 均是代數量。電流的方向是指其流向,電壓的方向是指其極性。
如上所述,電流和電壓的參考方向可以任意假定,而且二者是互相獨立的。若選取電流的方向從電壓的正端經過元件本身流向負端,則稱電壓與電流方向一致,或稱關聯參考方向。在圖1-5中,元件1的電壓u1與電流i1方向一致,為關聯參考方向;而元件2的電壓u2與電流i2方向不一致,稱為非關聯參考方向。以后如無說明,均采用關聯參考方向。

圖1-5 電流、電壓參考方向的關聯性
1.3.2 功率與能量
功率(power)是量度電路中能量轉換速率的一個物理量。電路在單位時間內所消耗的能量定義為瞬時功率,即

在圖1-6(a)中,電路N的u和i方向一致,由于

圖1-6 計算功率的示意圖

故瞬時功率為

對于圖1-6(b)所示電路,由于對N而言,u和i是非關聯參考方向,則N消耗的功率為

利用式(1-5)或式(1-6)計算功率時,若p>0,表明電路N此時消耗功率;若p<0,表明N此時產生功率。功率也是一個代數量。
若電路N的電壓u和電流i已知時,在關聯參考方向下,N在任何時刻t所吸收的能量為

若二端網絡N對所有t>-∞和所有電壓u、電流i,其吸收的能量非負,即

則稱該二端網絡(或元件)為無源的,否則為有源的。式(1-8)中,假設u(-∞)=0,i(-∞)=0。
今后,凡瞬時變化的電壓或電流,通常記為u(t)、i(t),或簡記為u、i。對于直流,通常用大寫字母U、I表示。
觀察與思考
圖1-7(a)和(b)是分別測量電路中的電壓與電流的方法,你學會了嗎?

圖1-7 電壓與電流的測量