習題1
1.設求f(1),f(-2),f(0)。
2.求下列函數的定義域。
(1);
(2);
(3)y=tan(3x-1)。
3.判斷下列各組函數是否同一個函數。
(1),g(x)=x-2;
(2)f(x)=sin2x+cos x2,g(x)=1;
(3),g(x)=x。
4.將y表示為x的函數。
(1)y=u2,u=cosx;
(2)y=sinu, u=ev,;
(3)y=sinu, u=x2+1。
5.求下列函數的復合過程。
(1)y=2cos x;
(2)y=tan e5x;
(3)。
6.求下列數列{xn}當n→∞時的極限。
(1);
(2);
(3);
(4)xn=sin n。
7.設求
,并討論
是否存在。
8.設f(x)=arccot x,求,
,并討論
是否存在。
9.下列變量中,哪些是無窮小量?哪些是無窮大量?
(1)x3(x→0);
(2);
(3);
(4)。
10.求下列極限。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(1) 姜啟源,謝金星,葉?。當祵W模型[M].4版.北京:高等教育出版社,2011.