官术网_书友最值得收藏!

There's more...

We can also plot the total reward for every episode in the training phase:

>>> import matplotlib.pyplot as plt
>>> plt.plot(total_rewards)
>>> plt.xlabel('Episode')
>>> plt.ylabel('Reward')
>>> plt.show()

This will generate the following plot:

If you have not installed matplotlib, you can do so via the following command:

conda install matplotlib

We can see that the reward for each episode is pretty random, and that there is no trend of improvement as we go through the episodes. This is basically what we expected.

In the plot of reward versus episodes, we can see that there are some episodes in which the reward reaches 200. We can end the training phase whenever this occurs since there is no room to improve. Incorporating this change, we now have the following for the training phase:

 >>> n_episode = 1000
>>> best_total_reward = 0
>>> best_weight = None
>>> total_rewards = []
>>> for episode in range(n_episode):
... weight = torch.rand(n_state, n_action)
... total_reward = run_episode(env, weight)
... print('Episode {}: {}'.format(episode+1, total_reward))
... if total_reward > best_total_reward:
... best_weight = weight
... best_total_reward = total_reward
... total_rewards.append(total_reward)
... if best_total_reward == 200:
... break
Episode 1: 9.0
Episode 2: 8.0
Episode 3: 10.0
Episode 4: 10.0
Episode 5: 10.0
Episode 6: 9.0
Episode 7: 17.0
Episode 8: 10.0
Episode 9: 43.0
Episode 10: 10.0
Episode 11: 10.0
Episode 12: 106.0
Episode 13: 8.0
Episode 14: 32.0
Episode 15: 98.0
Episode 16: 10.0
Episode 17: 200.0

The policy achieving the maximal reward is found in episode 17. Again, this may vary a lot because the weights are generated randomly for each episode. To compute the expectation of training episodes needed, we can repeat the preceding training process 1,000 times and take the average of the training episodes:

 >>> n_training = 1000
>>> n_episode_training = []
>>> for _ in range(n_training):
... for episode in range(n_episode):
... weight = torch.rand(n_state, n_action)
... total_reward = run_episode(env, weight)
... if total_reward == 200:
... n_episode_training.append(episode+1)
... break
>>> print('Expectation of training episodes needed: ',
sum(n_episode_training) / n_training)
Expectation of training episodes needed: 13.442

On average, we expect that it takes around 13 episodes to find the best policy.

主站蜘蛛池模板: 图们市| 临夏市| 彭泽县| 靖远县| 张家界市| 邹城市| 正宁县| 灵宝市| 瑞丽市| 平舆县| 灵寿县| 宝坻区| 凌源市| 德清县| 南丰县| 安化县| 柳江县| 安顺市| 广昌县| 七台河市| 建平县| 石柱| 临潭县| 澄江县| 楚雄市| 麻江县| 永兴县| 康保县| 商南县| 桃源县| 印江| 镇雄县| 全南县| 始兴县| 阿拉善盟| 宁武县| 龙胜| 来宾市| 安徽省| 景东| 固安县|