- Machine Learning for Cybersecurity Cookbook
- Emmanuel Tsukerman
- 65字
- 2021-06-24 12:28:58
How it works...
We begin by reading in our data (step 1). We then create a train-test split (step 2). We proceed to instantiate an XGBoost classifier with default parameters and fit it to our training set (step 3). Finally, in step 4, we use our XGBoost classifier to predict on the testing set. We then produce the measured accuracy of our XGBoost model's predictions.
推薦閱讀
- LabVIEW虛擬儀器從入門到測(cè)控應(yīng)用130例
- Hands-On Artificial Intelligence on Amazon Web Services
- 蕩胸生層云:C語(yǔ)言開發(fā)修行實(shí)錄
- PostgreSQL Administration Essentials
- Ceph:Designing and Implementing Scalable Storage Systems
- 傳感器與新聞
- Visual FoxPro數(shù)據(jù)庫(kù)基礎(chǔ)及應(yīng)用
- 運(yùn)動(dòng)控制系統(tǒng)
- 分析力!專業(yè)Excel的制作與分析實(shí)用法則
- Hands-On SAS for Data Analysis
- 計(jì)算機(jī)組裝與維修實(shí)訓(xùn)
- Spark Streaming實(shí)時(shí)流式大數(shù)據(jù)處理實(shí)戰(zhàn)
- 軟件需求最佳實(shí)踐
- 多傳感器數(shù)據(jù)智能融合理論與應(yīng)用
- Modern Big Data Processing with Hadoop