官术网_书友最值得收藏!

How to do it...

In the following steps, we will demonstrate how to instantiate, train, and test an XGBoost classifier:

  1. Start by reading in the data:
import pandas as pd

df = pd.read_csv("file_pe_headers.csv", sep=",")
y = df["Malware"]
X = df.drop(["Name", "Malware"], axis=1).to_numpy()
  1. Next, train-test-split a dataset:
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
  1. Create one instance of an XGBoost model and train it on the training set:
from xgboost import XGBClassifier

XGB_model_instance = XGBClassifier()
XGB_model_instance.fit(X_train, y_train)
  1. Finally, assess its performance on the testing set:
from sklearn.metrics import accuracy_score

y_test_pred = XGB_model_instance.predict(X_test)
accuracy = accuracy_score(y_test, y_test_pred)
print("Accuracy: %.2f%%" % (accuracy * 100))

The following screenshot shows the output:

主站蜘蛛池模板: 宝清县| 东兰县| 靖州| 建宁县| 石台县| 乐清市| 伊宁市| 栖霞市| 江城| 四会市| 南康市| 江华| 平远县| 衢州市| 六枝特区| 商城县| 徐州市| 麻城市| 江安县| 安康市| 沙河市| 五河县| 东方市| 额敏县| 大厂| 柳河县| 临安市| 肇东市| 泗水县| 湘潭市| 舞钢市| 新平| 介休市| 磴口县| 报价| 永昌县| 成都市| 广元市| 法库县| 延川县| 深圳市|