- Hands-On Exploratory Data Analysis with Python
- Suresh Kumar Mukhiya Usman Ahmed
- 180字
- 2021-06-24 16:44:56
Applying descriptive statistics
Having preprocessed the dataset, let's do some sanity checking using descriptive statistics techniques.
We can implement this as shown here:
dfs.info()
The output of the preceding code is as follows:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 37554 entries, 1 to 78442
Data columns (total 6 columns):
subject 37367 non-null object
from 37554 non-null object
date 37554 non-null datetime64[ns, UTC]
to 36882 non-null object
label 36962 non-null object
thread 37554 non-null object
dtypes: datetime64[ns, UTC](1), object(5)
memory usage: 2.0+ MB
We will learn more about descriptive statistics in Chapter 5, Descriptive Statistics. Note that there are 37,554 emails, with each email containing six columns—subject, from, date, to, label, and thread. Let's check the first few entries of the email dataset:
dfs.head(10)
The output of the preceding code is as follows:
Note that our dataframe so far contains six different columns. Take a look at the from field: it contains both the name and the email. For our analysis, we only need an email address. We can use a regular expression to refactor the column.
推薦閱讀
- Spring Cloud Alibaba核心技術與實戰案例
- Web應用系統開發實踐(C#)
- Instant Testing with CasperJS
- 數據庫系統教程(第2版)
- GeoServer Cookbook
- Mastering Unity Shaders and Effects
- 微信小程序開發解析
- Linux操作系統基礎案例教程
- 前端HTML+CSS修煉之道(視頻同步+直播)
- Python Web數據分析可視化:基于Django框架的開發實戰
- Azure Serverless Computing Cookbook
- 愛上C語言:C KISS
- MongoDB Cookbook(Second Edition)
- Mastering JavaScript
- Node.js應用開發