官术网_书友最值得收藏!

Removing NaN values

Next, we are going to remove NaN values from the field.

We can do this as follows:

dfs = dfs[dfs['date'].notna()]

Next, it is good to save the preprocessed file into a separate CSV file in case we need it again. We can save the dataframe into a separate CSV file as follows:

dfs.to_csv('gmail.csv')

Great! Having done that, let's do some descriptive statistics. 

主站蜘蛛池模板: 敦煌市| 鄂伦春自治旗| 赫章县| 成都市| 桐梓县| 迁安市| 涞源县| 鹿泉市| 观塘区| 阿鲁科尔沁旗| 双鸭山市| 翼城县| 南城县| 额济纳旗| 策勒县| 秭归县| 铁岭县| 威远县| 望奎县| 丘北县| 中江县| 五台县| 舟曲县| 馆陶县| 军事| 揭东县| 康乐县| 乌苏市| 三都| 莲花县| 深圳市| 河池市| 四川省| 永州市| 津市市| 甘泉县| 横山县| 梁平县| 寿光市| 专栏| 会泽县|