- The Deep Learning with Keras Workshop
- Matthew Moocarme Mahla Abdolahnejad Ritesh Bhagwat
- 214字
- 2021-06-18 18:13:40
Summary
In this chapter, we covered the various types of linear algebra components and operations that pertain to machine learning. These components include scalars, vectors, matrices, and tensors. The operations that were applied to these tensors included addition, transposition, and multiplication—all of which are fundamental for understanding the underlying mathematics of ANNs.
We also learned some of the basics of the Keras package, including the mathematics that occurs at each node. We replicated the model from the previous chapter, in which we built a logistic regression model to predict the same target from the online shopping purchasing intention dataset. However, in this chapter, we used the Keras library to create the model using an ANN instead of the scikit-learn logistic regression model. We achieved a similar level of accuracy using ANNs.
The upcoming chapters of this book will use the same concepts we learned about in this chapter; however, we will continue building ANNs with the Keras package. We will extend our ANNs to more than a single layer by creating models that have multiple hidden layers. By adding multiple hidden layers to our ANNs, we will put the "deep" into "deep learning". We will also tackle the issues of underfitting and overfitting since they are related to training models with ANNs.
- 電腦維護與故障排除傻瓜書(Windows 10適用)
- The Applied AI and Natural Language Processing Workshop
- 電腦軟硬件維修從入門到精通
- Learning Game Physics with Bullet Physics and OpenGL
- Hands-On Machine Learning with C#
- Arduino BLINK Blueprints
- RISC-V處理器與片上系統設計:基于FPGA與云平臺的實驗教程
- “硬”核:硬件產品成功密碼
- 嵌入式系統設計大學教程(第2版)
- Raspberry Pi Home Automation with Arduino
- 嵌入式系統原理:基于Arm Cortex-M微控制器體系
- The Deep Learning Workshop
- Spring微服務實戰(第2版)
- 微處理器及控制電路識圖
- 新型復印機·傳真機維修數據速查寶典