舉報

會員
The Deep Learning with Keras Workshop
Newexperiencescanbeintimidating,butnotthisone!Thisbeginner’sguidetodeeplearningisheretohelpyouexploredeeplearningfromscratchwithKeras,andbeonyourwaytotrainingyourfirsteverneuralnetworks.WhatsetsKerasapartfromotherdeeplearningframeworksisitssimplicity.Withovertwohundredthousandusers,Kerashasastrongeradoptioninindustryandtheresearchcommunitythananyotherdeeplearningframework.TheDeepLearningwithKerasWorkshopstartsbyintroducingyoutothefundamentalconceptsofmachinelearningusingthescikit-learnpackage.Afterlearninghowtoperformthelineartransformationsthatarenecessaryforbuildingneuralnetworks,you'llbuildyourfirstneuralnetworkwiththeKeraslibrary.Asyouadvance,you'lllearnhowtobuildmulti-layerneuralnetworksandrecognizewhenyourmodelisunderfittingoroverfittingtothetrainingdata.Withthehelpofpracticalexercises,you’lllearntousecross-validationtechniquestoevaluateyourmodelsandthenchoosetheoptimalhyperparameterstofine-tunetheirperformance.Finally,you’llexplorerecurrentneuralnetworksandlearnhowtotrainthemtopredictvaluesinsequentialdata.Bytheendofthisbook,you'llhavedevelopedtheskillsyouneedtoconfidentlytrainyourownneuralnetworkmodels.
目錄(71章)
倒序
- 封面
- 版權信息
- Preface
- 1. Introduction to Machine Learning with Keras
- Introduction
- Data Representation
- Data Preprocessing
- Life Cycle of Model Creation
- scikit-learn
- Keras
- Model Training
- Model Tuning
- Summary
- 2. Machine Learning versus Deep Learning
- Introduction
- Linear Transformations
- Introduction to Keras
- Summary
- 3. Deep Learning with Keras
- Introduction
- Building Your First Neural Network
- Model Evaluation
- Summary
- 4. Evaluating Your Model with Cross-Validation Using Keras Wrappers
- Introduction
- Cross-Validation
- Cross-Validation for Deep Learning Models
- Model Selection with Cross-Validation
- Summary
- 5. Improving Model Accuracy
- Introduction
- Regularization
- L1 and L2 Regularization
- Dropout Regularization
- Other Regularization Methods
- Hyperparameter Tuning with scikit-learn
- Summary
- 6. Model Evaluation
- Introduction
- Accuracy
- Imbalanced Datasets
- Confusion Matrix
- Summary
- 7. Computer Vision with Convolutional Neural Networks
- Introduction
- Computer Vision
- Convolutional Neural Networks
- The Architecture of a CNN
- Image Augmentation
- Summary
- 8. Transfer Learning and Pre-Trained Models
- Introduction
- Pre-Trained Sets and Transfer Learning
- Fine-Tuning a Pre-Trained Network
- Summary
- 9. Sequential Modeling with Recurrent Neural Networks
- Introduction
- Sequential Memory and Sequential Modeling
- Recurrent Neural Networks (RNNs)
- Long Short-Term Memory (LSTM)
- Summary
- Appendix
- 1. Introduction to Machine Learning with Keras
- 2. Machine Learning versus Deep Learning
- 3. Deep Learning with Keras
- 4. Evaluating Your Model with Cross-Validation Using Keras Wrappers
- 5. Improving Model Accuracy
- 6. Model Evaluation
- 7. Computer Vision with Convolutional Neural Networks
- 8. Transfer Learning and Pre-Trained Models
- 9. Sequential Modeling with Recurrent Neural Networks 更新時間:2021-06-18 18:13:53
推薦閱讀
- 筆記本電腦使用、維護與故障排除實戰
- FPGA從入門到精通(實戰篇)
- Learning AngularJS Animations
- 基于ARM的嵌入式系統和物聯網開發
- 計算機應用與維護基礎教程
- Learning Stencyl 3.x Game Development Beginner's Guide
- 計算機維修與維護技術速成
- Learning Game Physics with Bullet Physics and OpenGL
- Large Scale Machine Learning with Python
- 分布式系統與一致性
- Arduino BLINK Blueprints
- IP網絡視頻傳輸:技術、標準和應用
- USB應用分析精粹:從設備硬件、固件到主機端程序設計
- UML精粹:標準對象建模語言簡明指南(第3版)
- Zabbix 4 Network Monitoring
- 基于S5PV210處理器的嵌入式開發完全攻略
- ActionScript Graphing Cookbook
- 微型計算機原理及應用教程(第2版)
- 新編計算機組裝與維護
- 新型復印機·傳真機維修數據速查寶典
- SOA架構:服務和微服務分析及設計(原書第2版)
- 基于STM32的嵌入式系統應用
- MCU工程師煉成記:我和MSP430單片機
- 計算機技能大賽指導:調試維修
- 物聯網智能終端設計及工程實例
- Blender Cycles:Lighting and Rendering Cookbook
- Cardboard VR Projects for Android
- FPGA軟件測試與評價技術
- CXL體系結構:高速互連的原理解析與實踐
- 多媒體技術應用實訓教程