首頁(yè) > 計(jì)算機(jī)網(wǎng)絡(luò) >
編程語(yǔ)言與程序設(shè)計(jì)
> Scala for Machine Learning(Second Edition)最新章節(jié)目錄
舉報(bào)

會(huì)員
Scala for Machine Learning(Second Edition)
最新章節(jié):
Index
Ifyou’readatascientistoradataanalystwithafundamentalknowledgeofScalawhowantstolearnandimplementvariousMachinelearningtechniques,thisbookisforyou.AllyouneedisagoodunderstandingoftheScalaprogramminglanguage,abasicknowledgeofstatistics,akeeninterestinBigDataprocessing,andthisbook!
目錄(152章)
倒序
- 封面
- 版權(quán)頁(yè)
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- eBooks discount offers and more
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Getting Started
- Mathematical notations for the curious
- Why machine learning?
- Why Scala?
- Model categorization
- Taxonomy of machine learning algorithms
- Leveraging Java libraries
- Tools and frameworks
- Source code
- Let's kick the tires
- Summary
- Chapter 2. Data Pipelines
- Modeling
- Defining a methodology
- Monadic data transformation
- Workflow computational model
- Profiling data
- Assessing a model
- Summary
- Chapter 3. Data Preprocessing
- Time series in Scala
- Moving averages
- Fourier analysis
- The discrete Kalman filter
- Alternative preprocessing techniques
- Summary
- Chapter 4. Unsupervised Learning
- K-mean clustering
- Expectation-Maximization (EM)
- Summary
- Chapter 5. Dimension Reduction
- Challenging model complexity
- The divergences
- Principal components analysis (PCA)
- Nonlinear models
- Summary
- Chapter 6. Na?ve Bayes Classifiers
- Probabilistic graphical models
- Na?ve Bayes classifiers
- Multivariate Bernoulli classification
- Na?ve Bayes and text mining
- Pros and cons
- Summary
- Chapter 7. Sequential Data Models
- Markov decision processes
- The hidden Markov model (HMM)
- Conditional random fields
- Regularized CRF and text analytics
- Comparing CRF and HMM
- Performance consideration
- Summary
- Chapter 8. Monte Carlo Inference
- The purpose of sampling
- Gaussian sampling
- Monte Carlo approximation
- Bootstrapping with replacement
- Markov Chain Monte Carlo (MCMC)
- Summary
- Chapter 9. Regression and Regularization
- Linear regression
- Regularization
- Numerical optimization
- Logistic regression
- Summary
- Chapter 10. Multilayer Perceptron
- Feed-forward neural networks (FFNN)
- The multilayer perceptron (MLP)
- Evaluation
- Benefits and limitations
- Summary
- Chapter 11. Deep Learning
- Sparse autoencoder
- Restricted Boltzmann Machines (RBMs)
- Convolution neural networks
- Chapter 12. Kernel Models and SVM
- Kernel functions
- The support vector machine (SVM)
- Performance considerations
- Summary
- Chapter 13. Evolutionary Computing
- Evolution
- Genetic algorithms and machine learning
- Genetic algorithm components
- Implementation
- GA for trading strategies
- Advantages and risks of genetic algorithms
- Summary
- Chapter 14. Multiarmed Bandits
- K-armed bandit
- Thompson sampling
- Upper bound confidence
- Summary
- Chapter 15. Reinforcement Learning
- Reinforcement learning
- Learning classifier systems
- Summary
- Chapter 16. Parallelism in Scala and Akka
- Overview
- Scala
- Scalability with Actors
- Akka
- Summary
- Chapter 17. Apache Spark MLlib
- Overview
- Apache Spark core
- MLlib library
- Reusable ML pipelines
- Extending Spark
- Streaming engine
- Performance evaluation
- Pros and cons
- Summary
- Appendix A. Basic Concepts
- Scala programming
- Mathematics
- Finances 101
- Suggested online courses
- References
- Appendix B. References
- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Chapter 7
- Chapter 8
- Chapter 9
- Chapter 10
- Chapter 11
- Chapter 12
- Chapter 13
- Chapter 14
- Chapter 15
- Chapter 16
- Chapter 17
- Index 更新時(shí)間:2021-07-08 10:43:39
推薦閱讀
- ASP.NET Web API:Build RESTful web applications and services on the .NET framework
- Learn Type:Driven Development
- LabVIEW2018中文版 虛擬儀器程序設(shè)計(jì)自學(xué)手冊(cè)
- WSO2 Developer’s Guide
- Building Minecraft Server Modifications
- 運(yùn)用后端技術(shù)處理業(yè)務(wù)邏輯(藍(lán)橋杯軟件大賽培訓(xùn)教材-Java方向)
- Unity 3D腳本編程:使用C#語(yǔ)言開(kāi)發(fā)跨平臺(tái)游戲
- Deep Learning with R Cookbook
- OpenMP核心技術(shù)指南
- Java 9 Programming By Example
- 你真的會(huì)寫(xiě)代碼嗎
- 計(jì)算機(jī)應(yīng)用基礎(chǔ)案例教程(第二版)
- Python繪圖指南:分形與數(shù)據(jù)可視化(全彩)
- Spring Boot 2+Thymeleaf企業(yè)應(yīng)用實(shí)戰(zhàn)
- jQuery Essentials
- Mastering R for Quantitative Finance
- Learning Perforce SCM
- Instant SQL Server Analysis Services 2012 Cube Security
- Delphi Cookbook
- 看漫畫(huà)學(xué)Python:有趣、有料、好玩、好用(全彩版)
- IBM Cognos 10 Report Studio Cookbook(Second Edition)
- ASP.NET程序開(kāi)發(fā)參考手冊(cè)
- Mastering Laravel
- 深入理解JVM字節(jié)碼
- Mastering Grunt
- 新編C語(yǔ)言程序設(shè)計(jì)教程(第2版)
- L?VE for Lua Game Programming
- INSTANT Spring Tool Suite
- C語(yǔ)言程序設(shè)計(jì)教程
- Java程序設(shè)計(jì)基礎(chǔ)教程(慕課版)