官术网_书友最值得收藏!

Hands/On Machine Learning with C++
會員

ImplementsupervisedandunsupervisedmachinelearningalgorithmsusingC++librariessuchasPyTorchC++API,Caffe2,Shogun,Shark-ML,mlpack,anddlibwiththehelpofreal-worldexamplesanddatasetsKeyFeatures.Becomefamiliarwithdataprocessing,performancemeasuring,andmodelselectionusingvariousC++libraries.Implementpracticalmachinelearninganddeeplearningtechniquestobuildsmartmodels.DeploymachinelearningmodelstoworkonmobileandembeddeddevicesBookDescriptionC++canmakeyourmachinelearningmodelsrunfasterandmoreefficiently.Thishandyguidewillhelpyoulearnthefundamentalsofmachinelearning(ML),showingyouhowtouseC++librariestogetthemostoutofyourdata.ThisbookmakesmachinelearningwithC++forbeginnerseasywithitsexample-basedapproach,demonstratinghowtoimplementsupervisedandunsupervisedMLalgorithmsthroughreal-worldexamples.Thisbookwillgetyouhands-onwithtuningandoptimizingamodelfordifferentusecases,assistingyouwithmodelselectionandthemeasurementofperformance.You’llcovertechniquessuchasproductrecommendations,ensemblelearning,andanomalydetectionusingmodernC++librariessuchasPyTorchC++API,Caffe2,Shogun,Shark-ML,mlpack,anddlib.Next,you’llexploreneuralnetworksanddeeplearningusingexamplessuchasimageclassificationandsentimentanalysis,whichwillhelpyousolvevariousproblems.Later,you’lllearnhowtohandleproductionanddeploymentchallengesonmobileandcloudplatforms,beforediscoveringhowtoexportandimportmodelsusingtheONNXformat.BytheendofthisC++book,youwillhavereal-worldmachinelearningandC++knowledge,aswellastheskillstouseC++tobuildpowerfulMLsystems.Whatyouwilllearn.ExplorehowtoloadandpreprocessvariousdatatypestosuitableC++datastructures.EmploykeymachinelearningalgorithmswithvariousC++libraries.Understandthegrid-searchapproachtofindthebestparametersforamachinelearningmodel.ImplementanalgorithmforfilteringanomaliesinuserdatausingGaussiandistribution.Improvecollaborativefilteringtodealwithdynamicuserpreferences.UseC++librariesandAPIstomanagemodelstructuresandparameters.ImplementaC++programtosolveimageclassificationtaskswithLeNetarchitectureWhothisbookisforYouwillfindthisC++machinelearningbookusefulifyouwanttogetstartedwithmachinelearningalgorithmsandtechniquesusingthepopularC++language.AswellasbeingausefulfirstcourseinmachinelearningwithC++,thisbookwillalsoappealtodataanalysts,datascientists,andmachinelearningdeveloperswhoarelookingtoimplementdifferentmachinelearningmodelsinproductionusingvarieddatasetsandexamples.WorkingknowledgeoftheC++programminglanguageismandatorytogetstartedwiththisbook.

Kirill Kolodiazhnyi ·電子通信 ·10.7萬字

TensorFlow Machine Learning Cookbook
會員

Exploremachinelearningconceptsusingthelatestnumericalcomputinglibrary—TensorFlow—withthehelpofthiscomprehensivecookbookAboutThisBook?YourquickguidetoimplementingTensorFlowinyourday-to-daymachinelearningactivities?Learnadvancedtechniquesthatbringmoreaccuracyandspeedtomachinelearning?UpgradeyourknowledgetothesecondgenerationofmachinelearningwiththisguideonTensorFlowWhoThisBookIsForThisbookisidealfordatascientistswhoarefamiliarwithC++orPythonandperformmachinelearningactivitiesonaday-to-daybasis.Intermediateandadvancedmachinelearningimplementerswhoneedaquickguidetheycaneasilynavigatewillfindituseful.WhatYouWillLearn?BecomefamiliarwiththebasicsoftheTensorFlowmachinelearninglibrary?GettoknowLinearRegressiontechniqueswithTensorFlow?LearnSVMswithhands-onrecipes?Implementneuralnetworksandimprovepredictions?ApplyNLPandsentimentanalysistoyourdata?MasterCNNandRNNthroughpracticalrecipes?TakeTensorFlowintoproductionInDetailTensorFlowisanopensourcesoftwarelibraryforMachineIntelligence.TheindependentrecipesinthisbookwillteachyouhowtouseTensorFlowforcomplexdatacomputationsandwillletyoudigdeeperandgainmoreinsightsintoyourdatathaneverbefore.You’llworkthroughrecipesontrainingmodels,modelevaluation,sentimentanalysis,regressionanalysis,clusteringanalysis,artificialneuralnetworks,anddeeplearning–eachusingGoogle’smachinelearninglibraryTensorFlow.ThisguidestartswiththefundamentalsoftheTensorFlowlibrarywhichincludesvariables,matrices,andvariousdatasources.Movingahead,youwillgethands-onexperiencewithLinearRegressiontechniqueswithTensorFlow.Thenextchapterscoverimportanthigh-levelconceptssuchasneuralnetworks,CNN,RNN,andNLP.OnceyouarefamiliarandcomfortablewiththeTensorFlowecosystem,thelastchapterwillshowyouhowtotakeittoproduction.StyleandapproachThisbooktakesarecipe-basedapproachwhereeverytopicisexplicatedwiththehelpofareal-worldexample.

Nick McClure ·電子通信 ·7.7萬字

QQ閱讀手機版

主站蜘蛛池模板: 江源县| 九龙坡区| 上杭县| 文水县| 吕梁市| 大洼县| 靖江市| 常德市| 伽师县| 安平县| 贺兰县| 西峡县| 新源县| 博兴县| 衡水市| 盱眙县| 吉安市| 蒲城县| 西宁市| 卓尼县| 波密县| 清河县| 车致| 丽江市| 新丰县| 牙克石市| 静乐县| 金昌市| 景谷| 皋兰县| 澜沧| 随州市| 开平市| 松溪县| 上饶市| 韩城市| 新田县| 太康县| 佳木斯市| 宿迁市| 赤城县|