官术网_书友最值得收藏!

機器學(xué)習(xí)實戰(zhàn)
會員

機器學(xué)習(xí)是人工智能研究領(lǐng)域中一個極其重要的研究方向,在現(xiàn)今的大數(shù)據(jù)時代背景下,捕獲數(shù)據(jù)并從中萃取有價值的信息或模式,成為各行業(yè)求生存、謀發(fā)展的決定性手段,這使得這一過去為分析師和數(shù)學(xué)家所專屬的研究領(lǐng)域越來越為人們所矚目。本書第一部分主要介紹機器學(xué)習(xí)基礎(chǔ),以及如何利用算法進行分類,并逐步介紹了多種經(jīng)典的監(jiān)督學(xué)習(xí)算法,如k近鄰算法、樸素貝葉斯算法、Logistic回歸算法、支持向量機、AdaBoost集成方法、基于樹的回歸算法和分類回歸樹(CART)算法等。第三部分則重點介紹無監(jiān)督學(xué)習(xí)及其一些主要算法:k均值聚類算法、Apriori算法、FP-Growth算法。第四部分介紹了機器學(xué)習(xí)算法的一些附屬工具。全書通過精心編排的實例,切入日常工作任務(wù),摒棄學(xué)術(shù)化語言,利用高效的可復(fù)用Python代碼來闡釋如何處理統(tǒng)計數(shù)據(jù),進行數(shù)據(jù)分析及可視化。通過各種實例,讀者可從中學(xué)會機器學(xué)習(xí)的核心算法,并能將其運用于一些策略性任務(wù)中,如分類、預(yù)測、推薦。另外,還可用它們來實現(xiàn)一些更高級的功能,如匯總和簡化等。

(美)Peter Harrington ·程序設(shè)計 ·18.2萬字

大模型工程化:AI驅(qū)動下的數(shù)據(jù)體系
會員

大模型在眾多領(lǐng)域得到了廣泛應(yīng)用,促進了AI技術(shù)的整合和創(chuàng)新。然而,在實際應(yīng)用過程中,直接將大模型應(yīng)用于特定行業(yè)常常難以達(dá)到預(yù)期效果。本書詳細(xì)闡述如何在游戲經(jīng)營分析場景中利用大模型實現(xiàn)數(shù)據(jù)體系的建設(shè)。本書分為6個部分,共16章。第1部分主要介紹大模型技術(shù)的發(fā)展與應(yīng)用,從大模型的發(fā)展現(xiàn)狀展開,重點介紹大模型與數(shù)據(jù)體系的相關(guān)知識。第2部分主要介紹大模型下的關(guān)鍵基礎(chǔ)設(shè)施,涵蓋湖倉一體引擎、湖倉的關(guān)鍵技術(shù)、實時數(shù)據(jù)寫入和高效數(shù)據(jù)分析等內(nèi)容。第3部分主要介紹大模型下的數(shù)據(jù)資產(chǎn),圍繞數(shù)據(jù)資產(chǎn)重塑、數(shù)據(jù)資產(chǎn)標(biāo)準(zhǔn)、數(shù)據(jù)資產(chǎn)建設(shè)、數(shù)據(jù)資產(chǎn)運營展開。第4部分主要介紹自研領(lǐng)域大模型的技術(shù)原理,涵蓋領(lǐng)域大模型的基礎(chǔ)、需求理解算法、需求匹配算法、需求轉(zhuǎn)譯算法等內(nèi)容。第5部分主要介紹大模型的工程化原理,涉及工程化的基礎(chǔ)、技術(shù)籌備、建設(shè)要點、安全策略等內(nèi)容。第6部分介紹大模型在游戲領(lǐng)域的應(yīng)用,通過游戲領(lǐng)域的經(jīng)營分析案例,系統(tǒng)地闡述如何實現(xiàn)業(yè)務(wù)需求。本書適合致力于大模型技術(shù)應(yīng)用的數(shù)據(jù)工程師閱讀,也適合尋求AI自動化編程解決方案的軟件開發(fā)者閱讀,還適合希望利用AI提升業(yè)務(wù)效率的企業(yè)決策者閱讀。

騰訊游戲數(shù)據(jù)團隊編著 ·人工智能 ·15.6萬字

QQ閱讀手機版

主站蜘蛛池模板: 荣成市| 嘉鱼县| 武川县| 定襄县| 罗平县| 拜泉县| 文昌市| 达孜县| 昂仁县| 贡觉县| 禹城市| 阜宁县| 溧阳市| 宜兴市| 乳源| 岚皋县| 从化市| 襄垣县| 岐山县| 闵行区| 海丰县| 兴和县| 巢湖市| 陆川县| 灵丘县| 江津市| 分宜县| 涿州市| 洱源县| 民县| 永吉县| 开鲁县| 铁岭县| 桦川县| 天峨县| 贵定县| 清涧县| 永康市| 文山县| 洛浦县| 郑州市|