官术网_书友最值得收藏!

第四章 正弦交流電路

復習內容

本章主要介紹了正弦交流電的基本概念、表示方法和正弦交流電路的分析計算方法。

1.了解正弦交流電的產生過程。

2.熟練掌握正弦交流電的基本概念及主要參數。

3.掌握正弦交流電的各種表示方法及相互間的關系。

4.會用相量圖分析和計算簡單的交流電路。

5.熟練掌握純電阻 電路、純電感電路、純電容電路和RLC串聯電路的分析方法,并能熟練計算相關物理量。

6.熟練掌握交流電路中有功功率、無功功率、視在功率和功率因數的概念和計算,了解提高功率因數的意義和方法。

4.1 正弦交流電的基本概念

一、正弦交流電的產生過程

(一)正弦交流電的產生過程

1.正弦交流電:大小和方向都隨時間做周期性變化的電動勢、電壓和電流分別叫做交變電動勢、交變電壓、交變電流,統稱為交流電。

2.正弦交流電的產生:將矩形線圈置于勻強磁場中勻速轉動,產生按正弦規律變化的交流電,叫做正弦交流電,它是一種最簡單而又最基本的交流電。

3.正弦交流電一般表達式。

正弦交流電在時域內可用正弦或余弦函數來表示:

e=Emsin(ωt+φe

i=Imsin(ωt+φi

u=Umsin(ωt+φu

式中,EmImUm稱為這些正弦量的最大值。

(二)正弦交流電波形圖

正弦交流電的變化規律也可以用波形圖直觀地表示出來,如圖1-4所示。

圖1-4

二、正弦交流電的三要素

(一)正弦交流電的三要素

振幅、初相、頻率稱為正弦交流電的三要素。

(二)正弦交流電的角頻率、周期和頻率

1.角頻率:交流電每秒鐘變化的電角度,用ω表示,單位為弧度/秒(rad/s)。

2.周期:交流電完成一次周期性變化所需的時間,用T表示,單位為秒(s)。

3.頻率:交流電在1秒鐘內完成周期性變化的次數,用f表示,單位為赫茲(Hz)。它們之間的關系如下:

(三)正弦交流電的最大值、有效值和平均值

1.最大值。

正弦交流電在時域內可用正弦或余弦函數來表示:

e=Emsin(ωt+φe

i=Imsin(ωt+φi

u=Umsin(ωt+φu

式中,EmImUm稱為這些正弦量的最大值。

2.有效值。

把交流電i與直流電I分別通過兩個相同電阻,如果在相同時間內產生的熱量相同,則該直流電的數值I就叫交流電i的有效值。我們平時所說的交流電的值都是有效值。

3.正弦交流電的有效值和最大值的關系:

4.平均值與最大值的關系。

平均值是指交流電壓或電流在半個周期內所有瞬時值的平均數,是最大值的2/π,即0.637。

(四)正弦交流電的相位和相位差

1.初相:正弦交流電解析式中ωt+φ0稱為交流電的相位,又稱相角。計時開始時刻,即t=0時的相位φ0叫初相,它反映了交流電起始時刻的狀態。

2.相位差:兩個同頻率正弦量的相位之差,即初相之差。表征兩個同頻率正弦量變化的步調,即在時間上超前或滯后到達正、負最大值或零值的關系,用φ表示。

3.相位關系:

(1)若φ>0,則稱u在相位上超前i一個φ角;

(2)若φ<0,則稱u在相位上滯后i一個φ角;

(3)若φ=0,則稱ui同相;

(4)若,則稱ui正交;

(5)若φ=π,則稱ui反相。

初相隨計時起點的改變而改變,而相位差則保持不變,兩者均在-π~+π范圍內取值。

4.2 正弦交流電的表示方法

1.正弦交流電的表示方法

正弦交流電的表示方法有解析式法、波形圖法、矢量(相量)圖法。

2.矢量圖表示法

用初始位置的矢量表示一個正弦量,矢量的長度與正弦量的最大值或有效值成正比,矢量與橫軸正方向的夾角等于正弦量的初相,這種方法稱為正弦量的矢量圖表示法。矢量圖參考教材第93頁圖4-11和圖4-12。可以利用平行四邊形法則進行矢量運算(參考教材第94頁圖4-13)。

特別指出,用矢量圖表示法只能求解同頻率正弦量的和或差。

4.3 正弦交流電路

一、純電阻電路

(一)純電阻電路中電壓與電流的關系

1.電壓與電流的大小:

式中,UI指的是電壓、電流的有效值。

2.電壓與電流的相位關系:電壓與電流同相即φu=φi

(二)純電阻電路的功率

(1)瞬時功率:p=ui=UI-UIcos2ωt

(2)平均功率(有功功率):P=UI

二、純電感電路

(一)電感對交流電的阻礙作用

1.感抗:電感對交流電的阻礙作用稱為感抗。

2.感抗的計算:XL=ωL=2πfL

式中,XLLf的單位分別是Ω(歐姆)、H(亨)、Hz(赫茲)。

3.電感線圈的特性:電感線圈具有“通直流、阻交流”和“通低頻、阻高頻”的特性。

(二)純電感電路中電壓與電流的關系

1.電壓與電流的大小:

XL=ωL=2πfL

2.電壓與電流的相位關系:電壓超前電流π/2,即

φu-φi=π/2

(三)純電感電路功率

1.瞬時功率:pL=uLi=ULIsin2ωt

2.有功功率:PL=0

3.無功功率:,單位是乏(var),表征電感元件與電源之間能量交換的最大速率。

三、純電容電路

(一)電容對交流電的阻礙作用

1.容抗:電容對交流電的阻礙作用稱為容抗。

2.容抗的計算:XC=1/ωC=1/2πfC

式中,XCCf的單位分別是Ω(歐姆)、F(法)、Hz(赫茲)。

3.電容的特性:電容具有“通交流、阻直流”和“通高頻、阻低頻”的特性。

(二)純電容電路中電壓與電流的關系

1.電壓與電流的大小關系:

2.電壓與電流的相位關系:電壓滯后電流π/2,即

φu-φi= -π/2

(三)純電容電路的功率

1.瞬時功率:pC=uCi=UCIsin2ωt

2.有功功率:PC=0

3.無功功率:,單位是乏(var),表征電容元件與電源之間能量交換的最大速率。

四、RLC串聯電路

(一)RLC串聯電路端電壓與電流的相位關系

1.XLXCX>0,φ>0,總電壓u超前電流i銳角φ,電路呈電感性,稱為感性電路。

2.XLXCX<0,φ<0,總電壓u滯后電流i銳角φ,電路呈電容性,稱為容性電路。

3.XL=XCX=0,φ=0,總電壓u與電流i同相,電路呈電阻性,稱為串聯諧振電路。

(二)RLC串聯電路端電壓與電流的大小關系

1.RLC串聯電路中歐姆定律的表達式:

2.RLC串聯電路端電壓間的大小關系

(1)瞬時值間的關系(參考教材第87頁圖5-27):

u=uR+uL+uC

(2)有效值間的關系:

(3)電壓三角形:

其中,

3.RLC串聯電路總阻抗:

阻抗的單位是歐姆(Ω)。

(1)電抗:

X=XL-XC

電抗的單位是歐姆(Ω)。

(2)阻抗三角形:

(3)阻抗角:

(三)RLC串聯電路的兩個特例

1.RL串聯電路

(1)電壓間的關系:

此時總電壓超前電流的角度為:

(2)電流:

(3)阻抗:

(4)阻抗角:

2.RC串聯電路

(1)電壓間的關系:

此時總電壓滯后電流的角度為:

(2)電流:

(3)阻抗:

(4)阻抗角:

(四)RLC串聯電路的功率

1.有功功率:電阻上所消耗的功率。

2.無功功率:QLQC分別表征它們能量交換的最大速率。

Q=ULI- UCI=(UL- UCI=I2XL-XC)=UIsin φ

3.視在功率:表征電源提供的總功率。

P=Scos φ Q=Ssin φ

(五)功率因數

有功功率與視在功率的比值叫功率因數。表征電源功率被利用的程度用λ表示。

1.功率因數:

2.提高功率因數的意義。

(1)可充分發揮電源設備的潛在能力,提高經濟效益;

(2)大大減小輸電線路的電壓損耗和功率損耗,節省電能。

3.提高功率因數的方法。

(1)提高用電設備本身的功率因數;

(2)在感性負載上并聯電容器。提高功率因數的方法參考教材第112頁。

主站蜘蛛池模板: 巴林左旗| 武夷山市| 乐都县| 四子王旗| 和田市| 望奎县| 太康县| 定安县| 师宗县| 丁青县| 杭锦后旗| 元朗区| 澳门| 京山县| 呼图壁县| 卢龙县| 阿合奇县| 靖宇县| 宕昌县| 沐川县| 兰州市| 台山市| 长沙县| 衢州市| 巩留县| 潮安县| 德惠市| 平昌县| 沁源县| 呈贡县| 青田县| 祁阳县| 伊宁市| 甘南县| 丘北县| 昌都县| 博野县| 南丰县| 革吉县| 屏东市| 厦门市|