- 優化驅動的設計方法
- 高亮 邱浩波 肖蜜 李好
- 1001字
- 2021-12-10 16:41:17
參考文獻
[1] LUO Z, TONG L Y, KANG Z. A level set method for structural shape and topology optimization using radial basis functions[J]. Comput Struct, 2009, 87(7-8):425-434.
[2] LUO Z, TONG L Y, WANG M Y, et al. Shape and topology optimization of compliant mechanisms using a parameterization level set method[J]. J Comput Phys, 2007, 227(1):680-705.
[3] WANG Y Q, LUO Z, ZHANG N, et al. Topological shape optimization of microstructural metamaterials using a level set method[J]. Comp Mater Sci, 2014, 87:178-186.
[4] WU J L, LUO Z, LI H, et al. Level-set topology optimization for mechanical metamaterials under hybrid uncertainties [J]. Comput Method Appl M, 2017, 319:414-441.
[5] SETHIAN J A, WIEGMANN A. Structural boundary design via level set and immersed interface methods[J]. Journal of Computational Physics, 2000, 163(2):489-528.
[6] OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M].New York:Springer, 2003.
[7] WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Comput Method Appl M, 2003, 192:227-246.
[8] ALLAIRE G, JOUVE F, TOADER A M. Structural optimization using sensitivity analysis and a level-set method[J]. J Comput Phys, 2004, 194(1):363-393.
[9] VAN DIJK N P, MAUTE K, LANGELAAR M, et al. Level-set methods for structural topology optimization: a review[J]. Struct Multidiscip O, 2013, 48(3): 437-472.
[10] ANDREW A M. Level set methods and fast marching methods:evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science (2nd edition)[J]. Kybernetes, 2000, 29(2):239-248.
[11] WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Comput Method Appl M, 2003, 192:227-246.
[12] ALLAIRE G, JOUVE F, TOADER A M. Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics, 2004, 194(1):363-393.
[13] 羅俊召.基于水平集方法的結構拓撲與形狀優化技術及應用研究[D].武漢:華中科技大學,2008.
[14] LUO Z, WANG M Y, WANG S, et al. A level set-based parameterization method forstructural shape and topology optimization [J]. International Journal for Numerical Methods in Engineering, 2008, 76(1):1-26.
[15] WANG S, WANG M Y. Radial basis functions and level set method for structural topology optimization[J]. International Journal for Numerical Methods in Engineering, 2006, 65(12):2060-2090.
[16] 李好.改進的參數化水平集拓撲優化方法與應用研究[D].武漢:華中科技大學,2016.
[17] BUHMANN M D. Radial Basis Functions:Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12 [M]. New York:Cambridge University Press. 2004.
[18] TORRES C E, BARBA L A. Fast radial basis function interpolation with Gaussians by localization and iteration [J]. Journal of Computational Physics, 2009, 228 (14 ):4976-4999.
[19] WENDLAND H. Computational Aspects of Radial Basis Function Approximation[J]. Studies in Computational Mathematics, 2005, 12(12):231-256.
[20] LUO Z, TONG L, KANG Z. A level set method for structural shape and topology optimization using radial basis functions[J]. Computers & Structures, 2009, 87 (7-8):425-434.
[21] WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995, 4(1):389-396.
[22] SETHIAN J A, WIEGMANN A. Structural boundary design via level set and immersed interface methods[J]. J Comput Phys, 2000, 163(2):489-528.
[23] OSHER S, FEDKIW R P. Level set methods and dynamic implicit surface[M]. New York:Springer, 2002.
[24] ZHOU M, ROZVANY G I N. The COC algorithm, part Ⅱ:Topological, geometry and generalized shape optimization[J]. Comput Method Appl M, 1991, 89(1-3):309-336.
[25] SVANBERG K. The method of moving asymptotes:a new method for structural optimization[J]. Int J Numer Meth Eng, 1987, 24(2):359-373.
[26] HSIA C H, GUO J M, CHIANG J S. A fast Discrete Wavelet Transform algorithm for visual processing applications[J]. Signal Processing, 2012, 92(1):89-106.
[27] CHEN, K. Discrete wavelet transforms accelerated sparse preconditioners for dense boundary element systems [J]. Electronic Transactions on Numerical Analysis Etna, 1999, 8(539):138-153.
[28] FORD J M, TYRTYSHNIKOV E E. Combining Kronecker product approximation with discrete wavelet transforms to solve dense, function-related linear systems [J]. Siam Journal on Scientific Computing, 2003, 25(3):961-981.
[29] BEYLKIN G, COIFMAN R, ROKHLIN V. Fast wavelet transforms and numerical algorithms[J]. Commun Pur Appl Math, 1991, 44(2):141-183.
[30] 劉昌進,郭立,朱俊株,等.基于去降Mallat離散小波變換的彩色圖像分割[J].計算機工程與應用,2003,39(11):93-95.
[31] CHEN K. Discrete wavelet transforms accelerated sparse preconditioners for dense boundary element systems[J]. Electron T Numer Ana, 1999, 8:138-153.
[32] WANG M Y, WANG X. PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization [J]. Computer Modeling in Engineering & Sciences, 2004, 6(4):1-9.
[33] CHOI K K, KIM N H. Structural sensitivity analysis and optimization I-linear systems [M]. New York:Springer-Verlag, 2004.
[34] LUO Z, WANG M Y, WANG S Y, et al. A level set-based parameterization method for structural shape and topology optimization[J]. Int J Numer Meth Eng, 2008, 76 (1):1-26.
[35] BOURDIN B. Filters in topology optimization[J]. Int J Numer Meth Eng, 2001, 50:2143-2158.
[36] SIGMUND O. A 99 line topology optimization code written in Matlab [J]. Struct Multidiscip O, 2001, 21(2):120-127.
[37] BENDS E M P, SIGMUND O. Topology optimization: theory, methods, and applications[M]. Berlin: Springer, 2003.
- VMware View Security Essentials
- C# Programming Cookbook
- Django開發從入門到實踐
- Java加密與解密的藝術(第2版)
- TypeScript實戰指南
- Learning SciPy for Numerical and Scientific Computing(Second Edition)
- Raspberry Pi Home Automation with Arduino(Second Edition)
- 從零開始學C語言
- HTML5秘籍(第2版)
- Python 3.7從入門到精通(視頻教學版)
- 軟件測試綜合技術
- FPGA嵌入式項目開發實戰
- Arduino可穿戴設備開發
- 創意UI Photoshop玩轉移動UI設計
- Shopify Application Development