- 反直覺投資
- (美)邁克爾·J.莫布森
- 571字
- 2021-05-11 10:56:04
量化損失厭惡傾向
根據投資大師威廉姆·伯恩斯坦(William Bernstein)的想法,我們繪制了圖7.1到7.4,這些圖表可以幫助我們從量化角度對短視性損失厭惡傾向背后的基本觀點加以剖析。圖7.1反映了風險與回報之間的關系。由于風險(以標準差表示)為時間平方根的函數,而回報(以收益表示)則體現為時間的線性函數,因此,在風險和收益的相交處會出現一個明顯的拐點。請注意,圖中的坐標系采用的是對數坐標。
另一種能說明這個問題的方法需要借助于風險-收益比——即標準差和收益的比值(見圖7.2)。現在,我們可以看一下出現正收益結果的概率。在保持假設基本統計特征不變的情況下,圖7.3說明了投資隨時間而增長的概率。如果投資者以損益、而不是買入價格作為參照物,我們就可以用這個圖形來說明時間與投資者后悔度之間的關系。
根據圖7.3所示的概率,并假設損失的影響度是同等收益影響度的2倍,我們就可以得到一個簡化的效用函數(圖7.4)。圖中的參數變動范圍從-2.0(出現100%的損失×2)到1.0(出現100%的盈利)。

圖7.1 總收益與標準差
資料來源:筆者整理

圖7.2 標準差-收益比
資料來源:筆者整理

圖7.3 時間與收益的概率
資料來源:筆者整理

圖7.4 效用指數
資料來源:筆者整理
(1) 期望效用理論認為若決策者選擇風險決策備擇方案的過程符合效用公理,則他將會選擇期望效用值最大的那個備選方案。
(2) 跟蹤誤差(Tracking Error)即指數化跟蹤投資組合的收益率與目標指數收益率之間的偏差。