官术网_书友最值得收藏!

Contrasting enhancement using imadjust

A more gentle method for contrast enhancement is using imadjust. In its default form, this function maps pixel values in the original image to new, altered values while ensuring that only a small percentage (1 percent) of the values are saturated at low and high intensities of the original image. This results in a smoother transformation that mostly enhances useful details. We can see the result of applying this method if we add some more lines to our previous script:

img = imread('my_image.bmp');
img_eq = histeq(img);
img_adj = imadjust(img);
subplot(2,3,1),imshow(img),title('Original Image');
subplot(2,3,2),imshow(img_eq),title('Equalized Image');
subplot(2,3,3),imshow(img_adj),title('Adjusted Intensity Image');
subplot(2,3,4),imhist(img,64),title('Original Image Histogram');
subplot(2,3,5),imhist(img_eq,64),title('Equalized Image Histogram');
subplot(2,3,6),imhist(img_adj,64),title('Adjusted Image Histogram');

If we save this script as HisteqVsImadjust.m and execute it, we get the following screenshot:

It is obvious just by looking at the histograms, that imadjust stretches the histogram of the image, while histeq spreads it almost evenly. This is why the result of imadjust looks more natural.

In case we want more control over the final result, we can either tweak the methods used by defining more inputs that adjust the settings. For instance, we can provide a target histogram in histeq or a set of lower and higher limits for values that we want to clip in imadjust. You can play with these settings by using Help to see how the two functions can be used with extra inputs and then experiment with different input values.

主站蜘蛛池模板: 万安县| 呼伦贝尔市| 永善县| 海城市| 巴彦县| 金川县| 巫溪县| 景洪市| 庆安县| 大庆市| 托克托县| 虹口区| 贵港市| 辽源市| 新民市| 余庆县| 昌邑市| 满城县| 汉中市| 大冶市| 桐柏县| 林口县| 寿阳县| 郸城县| 大兴区| 玉田县| 晋江市| 永丰县| 中超| 吉隆县| 彭山县| 南涧| 永顺县| 元氏县| 东乡| 邢台县| 大同县| 铁岭市| 罗城| 高阳县| 临朐县|