官术网_书友最值得收藏!

Array functions

Many helpful array functions are supported in NumPy for analyzing data. We will list some part of them that are common in use. Firstly, the transposing function is another kind of reshaping form that returns a view on the original data array without copying anything:

>>> a = np.array([[0, 5, 10], [20, 25, 30]])
>>> a.reshape(3, 2)
array([[0, 5], [10, 20], [25, 30]])
>>> a.T
array([[0, 20], [5, 25], [10, 30]])

In general, we have the swapaxes method that takes a pair of axis numbers and returns a view on the data, without making a copy:

>>> a = np.array([[[0, 1, 2], [3, 4, 5]], 
 [[6, 7, 8], [9, 10, 11]]])
>>> a.swapaxes(1, 2)
array([[[0, 3],
 [1, 4],
 [2, 5]],
 [[6, 9],
 [7, 10],
 [8, 11]]])

The transposing function is used to do matrix computations; for example, computing the inner matrix product XT.X using np.dot:

>>> a = np.array([[1, 2, 3],[4,5,6]])
>>> np.dot(a.T, a)
array([[17, 22, 27],
 [22, 29, 36],
 [27, 36, 45]])

Sorting data in an array is also an important demand in processing data. Let's take a look at some sorting functions and their use:

>>> a = np.array ([[6, 34, 1, 6], [0, 5, 2, -1]])

>>> np.sort(a) # sort along the last axis
array([[1, 6, 6, 34], [-1, 0, 2, 5]])

>>> np.sort(a, axis=0) # sort along the first axis
array([[0, 5, 1, -1], [6, 34, 2, 6]])

>>> b = np.argsort(a) # fancy indexing of sorted array
>>> b
array([[2, 0, 3, 1], [3, 0, 2, 1]])
>>> a[0][b[0]]
array([1, 6, 6, 34])

>>> np.argmax(a) # get index of maximum element
1

See the following table for a listing of array functions:

主站蜘蛛池模板: 开远市| 辽阳县| 澄迈县| 浦县| 建德市| 清水河县| 深泽县| 西畴县| 平度市| 牙克石市| 滨州市| 威信县| 青浦区| 黄梅县| 平罗县| 红桥区| 龙海市| 固阳县| 安庆市| 瑞金市| 常德市| 开阳县| 温宿县| 格尔木市| 泸水县| 扶沟县| 阳新县| 正蓝旗| 山丹县| 榆林市| 兰考县| 长岛县| 芦山县| 余江县| 山东省| 册亨县| 祁门县| 蒙城县| 固镇县| 威信县| 武川县|