首頁 > 計(jì)算機(jī)網(wǎng)絡(luò) >
編程語言與程序設(shè)計(jì)
> Getting Started with Python Data Analysis最新章節(jié)目錄
目錄(72章)
倒序
- coverpage
- Getting Started with Python Data Analysis
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Support files eBooks discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Introducing Data Analysis and Libraries
- Data analysis and processing
- An overview of the libraries in data analysis
- Python libraries in data analysis
- Summary
- Chapter 2. NumPy Arrays and Vectorized Computation
- NumPy arrays
- Array functions
- Data processing using arrays
- Linear algebra with NumPy
- NumPy random numbers
- Summary
- Chapter 3. Data Analysis with Pandas
- An overview of the Pandas package
- The Pandas data structure
- The essential basic functionality
- Indexing and selecting data
- Computational tools
- Working with missing data
- Advanced uses of Pandas for data analysis
- Summary
- Chapter 4. Data Visualization
- The matplotlib API primer
- Exploring plot types
- Legends and annotations
- Plotting functions with Pandas
- Additional Python data visualization tools
- Summary
- Chapter 5. Time Series
- Time series primer
- Working with date and time objects
- Resampling time series
- Downsampling time series data
- Upsampling time series data
- Time zone handling
- Timedeltas
- Time series plotting
- Summary
- Chapter 6. Interacting with Databases
- Interacting with data in text format
- Interacting with data in binary format
- Interacting with data in MongoDB
- Interacting with data in Redis
- Summary
- Chapter 7. Data Analysis Application Examples
- Data munging
- Data aggregation
- Grouping data
- Summary
- Chapter 8. Machine Learning Models with scikit-learn
- An overview of machine learning models
- The scikit-learn modules for different models
- Data representation in scikit-learn
- Supervised learning – classification and regression
- Unsupervised learning – clustering and dimensionality reduction
- Measuring prediction performance
- Summary
- Index 更新時(shí)間:2021-07-09 21:02:45
推薦閱讀
- Google Flutter Mobile Development Quick Start Guide
- Python 3.7網(wǎng)絡(luò)爬蟲快速入門
- Android Jetpack開發(fā):原理解析與應(yīng)用實(shí)戰(zhàn)
- Java EE 6 企業(yè)級(jí)應(yīng)用開發(fā)教程
- MongoDB for Java Developers
- UI智能化與前端智能化:工程技術(shù)、實(shí)現(xiàn)方法與編程思想
- 21天學(xué)通C++(第6版)
- 表哥的Access入門:以Excel視角快速學(xué)習(xí)數(shù)據(jù)庫開發(fā)(第2版)
- Android底層接口與驅(qū)動(dòng)開發(fā)技術(shù)詳解
- 飛槳PaddlePaddle深度學(xué)習(xí)實(shí)戰(zhàn)
- Scala for Machine Learning(Second Edition)
- Creating Data Stories with Tableau Public
- Python Projects for Kids
- Java EE架構(gòu)設(shè)計(jì)與開發(fā)實(shí)踐
- Microsoft Exchange Server 2016 PowerShell Cookbook(Fourth Edition)
- Visual Basic程序設(shè)計(jì)
- 給產(chǎn)品經(jīng)理講技術(shù)
- R語言編程:基于tidyverse
- AVR單片機(jī)C語言非常入門與視頻演練
- Spring Batch Essentials
- Android系統(tǒng)應(yīng)用開發(fā)實(shí)戰(zhàn)詳解
- C/C++實(shí)踐進(jìn)階之道:寫給程序員看的編程書
- Large Scale Machine Learning with Spark
- Visual Basic程序設(shè)計(jì)實(shí)驗(yàn)指導(dǎo)
- Mastering AngularJS Directives
- 軟件架構(gòu)設(shè)計(jì):實(shí)用方法及實(shí)踐
- Python基礎(chǔ)及應(yīng)用
- PHP 7從入門到精通(視頻教學(xué)版)(第2版)
- Oracle BPM Suite 11g:Advanced BPMN Topics
- Appium Essentials