官术网_书友最值得收藏!

Plotting functions with Pandas

We have covered most of the important components in a plot figure using matplotlib. In this section, we will introduce another powerful plotting method for directly creating standard visualization from Pandas data objects that are often used to manipulate data.

For Series or DataFrame objects in Pandas, most plotting types are supported, such as line, bar, box, histogram, and scatter plots, and pie charts. To select a plot type, we use the kind argument of the plot function. With no kind of plot specified, the plot function will generate a line style visualization by default , as in the following example:

>>> s = pd.Series(np.random.normal(10, 8, 20))
>>> s.plot(style='ko—', alpha=0.4, label='Series plotting')
>>> plt.legend()
>>> plt.show()

The output for the preceding command is as follows:

Another example will visualize the data of a DataFrame object consisting of multiple columns:

>>> data = {'Median_Age': [24.2, 26.4, 28.5, 30.3],
 'Density': [244, 256, 268, 279]}
>>> index_label = ['2000', '2005', '2010', '2014'];
>>> df1 = pd.DataFrame(data, index=index_label)
>>> df1.plot(kind='bar', subplots=True, sharex=True)
>>> plt.tight_layout();
>>> plt.show()

The output for the preceding command is as follows:

The plot method of the DataFrame has a number of options that allow us to handle the plotting of the columns. For example, in the above DataFrame visualization, we chose to plot the columns in separate subplots. The following table lists more options:

主站蜘蛛池模板: 云浮市| 花垣县| 昌都县| 杭州市| 霍州市| 杭锦旗| 怀远县| 岱山县| 洞头县| 林芝县| 钟山县| 邹城市| 河池市| 伊吾县| 南康市| 新营市| 石台县| 金昌市| 扎鲁特旗| 长寿区| 凯里市| 伊金霍洛旗| 嘉禾县| 镇坪县| 定襄县| 龙口市| 濮阳县| 平遥县| 沙洋县| 聂荣县| 永昌县| 榕江县| 武冈市| 盐津县| 昭觉县| 台江县| 布拖县| 潮安县| 茂名市| 会同县| 新沂市|