- Learning Salesforce Einstein
- Mohith Shrivastava
- 167字
- 2021-07-02 21:43:54
Machine Learning
As per Wikipedia:
“Machine learning provides computers with the ability to learn without being explicitly programmed”
Machine learning in general comprises three major steps:
- We collect a lot of examples that specify the correct output for a given input.
- Based on the input dataset, we apply algorithms to form a model or a mathematical function that can predict the outcome.
- We pass the input to the mathematical function obtained in step 2 to obtain the necessary results. Consider the following diagram:

The high level major steps of any machine learning system
In this chapter, we will cover a simple experiment using Google’s Prediction API with Salesforce data, and, in the later chapters, we will introduce you to the PredictionIO part of Einstein offerings from Salesforce, which is an open source Machine Learning Server that allows developers and data scientists to capture data via its Event server, build predictive models with algorithms, and then deploy it as a web service.
推薦閱讀
- 大話PLC(輕松動漫版)
- Docker and Kubernetes for Java Developers
- 零基礎學Scratch少兒編程:小學課本中的Scratch創意編程
- Java EE框架整合開發入門到實戰:Spring+Spring MVC+MyBatis(微課版)
- Python編程與幾何圖形
- HTML5+CSS3網頁設計
- Linux Shell核心編程指南
- Python深度學習原理、算法與案例
- OpenResty完全開發指南:構建百萬級別并發的Web應用
- Unity 3D/2D移動開發實戰教程
- Node.js開發指南
- R數據科學實戰:工具詳解與案例分析
- SQL Server 2008 R2數據庫技術及應用(第3版)
- 微信小程序開發實戰:設計·運營·變現(圖解案例版)
- Struts 2.x權威指南