官术网_书友最值得收藏!

When to stop tuning machine learning models

When to stop tuning the hyperparameters in a machine learning model is a million-dollar question. This problem can be mostly solved by keeping tabs on training and testing errors. While increasing the complexity of a model, the following stages occur:

  • Stage 1: Underfitting stage - high train and high test errors (or low train and low test accuracy)
  • Stage 2: Good fit stage (ideal scenario) - low train and low test errors (or high train and high test accuracy)
  • Stage 3: Overfitting stage - low train and high test errors (or high train and low test accuracy)
主站蜘蛛池模板: 靖边县| 汉川市| 霞浦县| 措勤县| 富川| 宝坻区| 高碑店市| 云梦县| 资源县| 日照市| 湖南省| 洪雅县| 婺源县| 十堰市| 高安市| 个旧市| 萍乡市| 泸水县| 大名县| 上杭县| 谢通门县| 茌平县| 旺苍县| 吐鲁番市| 来安县| 辽源市| 临沭县| 郯城县| 平湖市| 缙云县| 上高县| 汉川市| 南投县| 玉树县| 信宜市| 东至县| 巩留县| 榆中县| 南召县| 辽阳县| 综艺|