- Machine Learning for Developers
- Rodolfo Bonnin
- 81字
- 2021-07-02 15:46:48
Normal distribution
This very common continuous random function, also called a Gaussian function, can be defined with the simple metrics of the mean and the variance, although in a somewhat complex form.
This is the canonical form of the function:

Take a look at the following code snippet:
import matplotlib.pyplot as plt #Import the plot library
import numpy as np
mu=0.
sigma=2.
distro = np.random.normal(mu, sigma, 10000)
plt.hist(distro, 100, normed=True)
plt.show()
The following graph shows the generated distribution's histogram:

Normal distribution
推薦閱讀
- Java程序設(shè)計(jì)與開發(fā)
- Java EE 6 企業(yè)級(jí)應(yīng)用開發(fā)教程
- Learning Chef
- React Native Cookbook
- Python Deep Learning
- 數(shù)據(jù)結(jié)構(gòu)習(xí)題精解(C語言實(shí)現(xiàn)+微課視頻)
- PLC編程及應(yīng)用實(shí)戰(zhàn)
- Advanced Oracle PL/SQL Developer's Guide(Second Edition)
- 大模型RAG實(shí)戰(zhàn):RAG原理、應(yīng)用與系統(tǒng)構(gòu)建
- Android系統(tǒng)原理及開發(fā)要點(diǎn)詳解
- Bootstrap 4 Cookbook
- Kubernetes源碼剖析
- Python:Deeper Insights into Machine Learning
- 大數(shù)據(jù)時(shí)代的企業(yè)升級(jí)之道(全3冊(cè))
- .NET 4.0面向?qū)ο缶幊搪劊簯?yīng)用篇