A matrix is a two-dimensional array of numbers where each element is identified by two indices instead of just one. If a real matrix X has a height of m and a width of n, then we say that X ∈ Rm × n. Here, R is a set of real numbers.
The following example shows how different matrices are converted to tensor objects:
# convert matrices to tensor objects import numpy as np import tensorflow as tf
# create a 2x2 matrix in various forms matrix1 = [[1.0, 2.0], [3.0, 40]] matrix2 = np.array([[1.0, 2.0], [3.0, 40]], dtype=np.float32) matrix3 = tf.constant([[1.0, 2.0], [3.0, 40]])