官术网_书友最值得收藏!

pandas DataFrame

You may often see df appearing on Python-based data science resources and literature. It is a conventional way to denote the pandas DataFrame structure. pandas lets us perform the otherwise tedious operations on tables (data frames) with simple commands, such as dropna(), merge(), pivot(), and set_index().

pandas is designed to streamline handling processes of common data types, such as time series. While NumPy is more specialized in mathematical calculations, pandas has built-in string manipulation functions and also allows custom functions to be applied to each cell via apply().

Before use, we import the module with the conventional shorthand as:

pd.DataFrame(my_list_or_array)

To read data from existing files, just use the following:

pd.read_csv()

For tab-delimited files, just add '\t' as the separator: 

pd.read_csv(sep='\t')

pandas supports data import from a wide range of common file structures for data handling and processing, from pd.read_xlsx() for Excel and pd.read_sql_query() for SQL databases to the more recently popular JSON, HDF5, and Google BigQuery.

pandas provides a collection of handy operations for data manipulation and is considered a must-have in a Python data scientist's or developer's toolbox.

We encourage our readers to seek resources and books on our Mapt platform to get a better and intimate understanding of the pandas library usage. 

To fully understand and utilize the functionalities, you may want to read more from the official documentation: 

http://pandas.pydata.org/pandas-docs/stable/ 

主站蜘蛛池模板: 灵宝市| 淮阳县| 浦县| 佳木斯市| 崇明县| 平乐县| 浦江县| 瑞昌市| 南乐县| 通江县| 兴安盟| 清水县| 满洲里市| 什邡市| 馆陶县| 鄂尔多斯市| 休宁县| 阜新市| 峨山| 兴和县| 剑河县| 内黄县| 安徽省| 乐陵市| 灵璧县| 南郑县| 嘉定区| 永登县| 滁州市| 那坡县| 波密县| 治多县| 清苑县| 清新县| 花莲县| 高州市| 利川市| 嘉黎县| 红河县| 惠州市| 鹤庆县|