官术网_书友最值得收藏!

NumPy array

NumPy allows the creation of n-dimensional arrays, which is where the name of the data type, numpy.ndarraycomes from. It handles many sophisticated scientific and matrix operations. It provides many linear algebra and random number functionalities.

NumPy lies at the core of many calculations that computationally enable Matplotlib and many other Python packages. It is therefore a dependency for many common packages and often comes along with Python distributions. For instance, it provides the fundamental data structure for SciPy, a package that handles statistical calculations useful in science and many other areas.

To import NumPy, input this:

import numpy as np

To create a NumPy array from lists, use the following:

x = np.array([2,3,1,0])

You can also create non-integral arithmetic series with NumPy by using np.linspace(start,stop,number)

See the following example:

In [1]: np.linspace(3,5,20)
Out[1]: array([ 3.        ,  3.10526316,  3.21052632,  3.31578947,  3.42105263,
        3.52631579,  3.63157895,  3.73684211,  3.84210526,  3.94736842,
        4.05263158,  4.15789474,  4.26315789,  4.36842105,  4.47368421,
        4.57894737,  4.68421053,  4.78947368,  4.89473684,  5.        ])

Matrix operations can be applied across NumPy arrays. Here is an example of multiplying two arrays:

In [2]: a = np.array([1, 2, 1])
In [3]: b = np.array([2, 3, 8])
In [4]: a*b
Out[4]: array([2, 6, 8])
主站蜘蛛池模板: 炎陵县| 晋城| 中宁县| 沈丘县| 宜昌市| 南昌市| 深水埗区| 上林县| 建始县| 新乡市| 巴楚县| 辛集市| 庆安县| 汝州市| 都匀市| 七台河市| 宁明县| 奉节县| 陆河县| 茌平县| 武夷山市| 新昌县| 房山区| 政和县| 新沂市| 绍兴市| 叶城县| 上饶县| 芜湖县| 古交市| 斗六市| 江口县| 吴川市| 双鸭山市| 八宿县| 新泰市| 大丰市| 织金县| 炎陵县| 财经| 安仁县|