官术网_书友最值得收藏!

Summary

In this chapter, we started our journey into the RL world by learning what makes RL special and how it relates to the supervised and unsupervised learning paradigm. We then learned about the basic RL formalisms and how they interact with each other, after which we defined Markov process, Markov reward process, and Markov decision process.

In the next chapter, we'll move away from the formal theory into the practice of RL. We'll cover the setup required, libraries, and write our first agent.

主站蜘蛛池模板: 县级市| 宝坻区| 两当县| 迭部县| 罗甸县| 泗水县| 舞阳县| 犍为县| 横山县| 阿拉善右旗| 阿坝| 渭源县| 鸡东县| 淳安县| 鹰潭市| 虹口区| 鄯善县| 英山县| 大化| 达拉特旗| 吉林市| 桓台县| 宁陕县| 永泰县| 天台县| 兴城市| 离岛区| 临高县| 长岛县| 阳高县| 都江堰市| 贵港市| 江西省| 延吉市| 萨迦县| 海原县| 星子县| 古浪县| 大悟县| 黄龙县| 铜山县|