- Deep Reinforcement Learning Hands-On
- Maxim Lapan
- 87字
- 2021-06-25 20:46:51
Summary
In this chapter, we started our journey into the RL world by learning what makes RL special and how it relates to the supervised and unsupervised learning paradigm. We then learned about the basic RL formalisms and how they interact with each other, after which we defined Markov process, Markov reward process, and Markov decision process.
In the next chapter, we'll move away from the formal theory into the practice of RL. We'll cover the setup required, libraries, and write our first agent.
推薦閱讀
- ArchiCAD 19:The Definitive Guide
- Practical Data Analysis
- Div+CSS 3.0網(wǎng)頁布局案例精粹
- 計(jì)算機(jī)圖形圖像處理:Photoshop CS3
- 現(xiàn)代機(jī)械運(yùn)動(dòng)控制技術(shù)
- JSF2和RichFaces4使用指南
- AutoCAD 2012中文版繪圖設(shè)計(jì)高手速成
- Implementing AWS:Design,Build,and Manage your Infrastructure
- 網(wǎng)絡(luò)存儲(chǔ)·數(shù)據(jù)備份與還原
- 大數(shù)據(jù)案例精析
- MPC5554/5553微處理器揭秘
- 無人駕駛感知智能
- Machine Learning in Java
- 智能移動(dòng)機(jī)器人的設(shè)計(jì)、制作與應(yīng)用
- 過程控制與集散系統(tǒng)