書名: Mastering Machine Learning for Penetration Testing作者名: Chiheb Chebbi本章字數(shù): 147字更新時間: 2021-06-25 21:03:07
Deep Exploit
Many great publicly available tools appeared lately that use machine learning capabilities to leverage penetration testing to another level. One of these tools is Deep Exploit. It was presented at black hat conference 2018. It is a fully automated penetration test tool linked with metasploit. This great tool uses uses reinforcement learning (self-learning).

It is able to perform the following tasks:
- Intelligence gathering
- Threat modeling
- Vulnerability analysis
- Exploitation
- Post-exploitation
- Reporting
To download Deep Exploit visit its official GitHub repository: https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/DeepExploit.
It is consists of a machine learning model (A3C) and metasploit. This is a high level overview of Deep Exploit architecture:

The required environment to make Deep Exploit works properly is the following:
- Kali Linux 2017.3 (guest OS on VMWare)
- Memory: 8.0GB
- Metasploit framework 4.16.15-dev
- Windows 10 Home 64-bit (Host OS)
- CPU: Intel(R) Core(TM) i7-6500U 2.50GHz
- Memory: 16.0GB
- Python 3.6.1 (Anaconda3)
- TensorFlow 1.4.0
- Keras 2.1.2
推薦閱讀
- 6G潛在關(guān)鍵技術(shù)(下冊)
- 連接未來:從古登堡到谷歌的網(wǎng)絡(luò)革命
- 解析QUIC/HTTP3:未來互聯(lián)網(wǎng)的基石
- 光網(wǎng)絡(luò)評估及案例分析
- Twilio Cookbook
- INSTANT PhpStorm Starter
- 信息通信網(wǎng)絡(luò)建設(shè)安全管理概要2
- Wireshark網(wǎng)絡(luò)分析就這么簡單
- 數(shù)字通信同步技術(shù)的MATLAB與FPGA實現(xiàn):Altera/Verilog版(第2版)
- Learning Swift(Second Edition)
- 工業(yè)以太網(wǎng)技術(shù):AFDX/TTE網(wǎng)絡(luò)原理、接口、互連與安全
- Intelligent Mobile Projects with TensorFlow
- React Design Patterns and Best Practices(Second Edition)
- 網(wǎng)絡(luò)基本通信約束下的系統(tǒng)性能極限分析與設(shè)計
- ElasticSearch Server