- Java Deep Learning Projects
- Md. Rezaul Karim
- 243字
- 2021-06-18 19:07:56
To get the most out of this book
All the examples have been implemented using Deeplearning4j with some open source libraries in Java. To be more specific, the following API/tools are required:
- Java/JDK version 1.8
- Spark version 2.3.0
- Spark csv_2.11 version 1.3.0
- ND4j backend version nd4j-cuda-9.0-platform for GPU, otherwise nd4j-native
- ND4j version >=1.0.0-alpha
- DL4j version >=1.0.0-alpha
- Datavec version >=1.0.0-alpha
- Arbiter version >=1.0.0-alpha
- Logback version 1.2.3
- JavaCV platform version 1.4.1
- HTTP Client version 4.3.5
- Jfreechart 1.0.13
- Jcodec 0.2.3
- Eclipse Mars or Luna (latest) or Intellij IDEA
- Maven Eclipse plugin (2.9 or higher)
- Maven compiler plugin for Eclipse (2.3.2 or higher)
- Maven assembly plugin for Eclipse (2.4.1 or higher)
Regarding operating system: Linux distributions are preferable (including Debian, Ubuntu, Fedora, RHEL, CentOS). To be more specific, for example, for Ubuntu it is recommended to have a 14.04 (LTS) 64-bit (or later) complete installation or VMWare player 12 or Virtual box. You can run Spark jobs on Windows (XP/7/8/10) or Mac OS X (10.4.7+).
Regarding hardware configuration: A machine or server having core i5 processor, about 100 GB disk space, and at least 16 GB RAM. In addition, an Nvidia GPU driver has to be installed with CUDA and CuDNN configured if you want to perform the training on GPU. Enough storage for running heavy jobs is needed (depending on the dataset size you will be handling), preferably at least 50 GB of free disk storage (for standalone and for SQL warehouse).
- 集成架構中型系統
- AutoCAD繪圖實用速查通典
- 會聲會影X5視頻剪輯高手速成
- Mastercam 2017數控加工自動編程經典實例(第4版)
- 走入IBM小型機世界
- Hadoop 2.x Administration Cookbook
- 圖解PLC控制系統梯形圖和語句表
- Mastering D3.js
- Mastering Elastic Stack
- 基于32位ColdFire構建嵌入式系統
- PVCBOT機器人控制技術入門
- 突破,Objective-C開發速學手冊
- Excel 2010函數與公式速查手冊
- R Data Analysis Projects
- Visual Studio 2010 (C#) Windows數據庫項目開發