- PySpark Cookbook
- Denny Lee Tomasz Drabas
- 160字
- 2021-06-18 19:06:24
What this book covers
Chapter 1, Installing and Configuring Spark, shows us how to install and configure Spark, either as a local instance, as a multi-node cluster, or in a virtual environment.
Chapter 2, Abstracting Data with RDDs, covers how to work with Apache Spark Resilient Distributed Datasets (RDDs).
Chapter 3, Abstracting Data with DataFrames, explores the current fundamental data structure—DataFrames.
Chapter 4, Preparing Data for Modeling, covers how to clean up your data and prepare it for modeling.
Chapter 5, Machine Learning with MLlib, shows how to build machine learning models with PySpark's MLlib module.
Chapter 6, Machine Learning with the ML Module, moves on to the currently supported machine learning module of PySpark—the ML module.
Chapter 7, Structured Streaming with PySpark, covers how to work with Apache Spark structured streaming within PySpark.
Chapter 8, GraphFrames – Graph Theory with PySpark, shows how to work with GraphFrames for Apache Spark.
- 從零構(gòu)建知識(shí)圖譜:技術(shù)、方法與案例
- Android開發(fā)精要
- 算法精粹:經(jīng)典計(jì)算機(jī)科學(xué)問(wèn)題的Java實(shí)現(xiàn)
- Selenium Design Patterns and Best Practices
- C#程序設(shè)計(jì)(慕課版)
- Serverless架構(gòu)
- Android程序設(shè)計(jì)基礎(chǔ)
- Spring核心技術(shù)和案例實(shí)戰(zhàn)
- C++從入門到精通(第5版)
- Python深度學(xué)習(xí):模型、方法與實(shí)現(xiàn)
- Kotlin Programming By Example
- Node.js區(qū)塊鏈開發(fā)
- Android Sensor Programming By Example
- 進(jìn)入IT企業(yè)必讀的324個(gè)Java面試題
- IPython Interactive Computing and Visualization Cookbook