- Mastering Microservices with Java
- Sourabh Sharma
- 526字
- 2021-07-02 13:03:28
Ease of development – could be done better
Generally, large monolithic application code is the toughest to understand for developers, and it takes time before a new developer can become productive. Even loading the large monolithic application into an integrated development environment (IDE) is troublesome, as it makes the IDE slower and the developer less productive.
A change in a large monolithic application is difficult to implement and takes more time due to the large code base, and there can also be a high risk of bugs if impact analysis is not done properly and thoroughly. Therefore, it becomes a prerequisite for developers to do a thorough impact analysis before implementing any changes.
In monolithic applications, dependencies build up over time as all components are bundled together. Therefore, the risk associated with code changes rises exponentially as the amount of modified lines of code grows.
When a code base is huge and more than 100 developers are working on it, it becomes very difficult to build products and implement new features because of the previously mentioned reason. You need to make sure that everything is in place, and that everything is coordinated. A well-designed and documented API helps a lot in such cases.
Netflix, the on-demand internet streaming provider, had problems getting their application developed, with around 100 people working on it. Then, they used a cloud service and broke up the application into separate pieces. These ended up being microservices. Microservices grew from the desire for speed and agility and to deploy teams independently.
Microcomponents are made loosely coupled thanks to their exposed APIs, which can be continuously integration tested. With microservices' continuous release cycle, changes are small and developers can rapidly exploit them with a regression test, then go over them and fix the defects found, reducing the risk of a flawed deployment. This results in higher velocity with a lower associated risk.
Owing to the separation of functionality and the single responsibility principle, microservices make teams very productive. You can find a number of examples online where large projects have been developed with very low team sizes, such as 8 to 10 developers.
Developers can have better focus with smaller code bases and better feature implementation, leading to a higher empathetic relationship with the users of the product. This conduces better motivation and clarity in feature implementation. An empathetic relationship with users allows for a shorter feedback loop and better and speedier prioritization of the feature pipeline. A shorter feedback loop also makes defect detection faster.
Each microservices team works independently and new features or ideas can be implemented without being coordinated with larger audiences. The implementation of endpoint failure handling is also easily achieved in the microservices design.
At a recent conference, a team demonstrated how they had developed a microservices-based transport-tracking application for iOS and Android, within 10 weeks, with Uber-type tracking features. A big consulting firm gave a seven-month estimation for this application to its client. This shows how the microservices design is aligned with agile methodologies and CI/CD.
So far, we have discussed only the microservices design—there are also nanoservices, teraservices, and serverless designs to explore.
- C及C++程序設計(第4版)
- Objective-C應用開發全程實錄
- PyTorch自動駕駛視覺感知算法實戰
- Visual FoxPro程序設計教程
- Python高級機器學習
- 區塊鏈:以太坊DApp開發實戰
- Python機器學習經典實例
- Building Android UIs with Custom Views
- 區塊鏈技術與應用
- iOS自動化測試實戰:基于Appium、Python與Pytest
- Learning YARN
- 3ds Max印象 電視欄目包裝動畫與特效制作
- HTML5移動Web開發
- Beginning C# 7 Hands-On:The Core Language
- Learning QGIS(Second Edition)