官术网_书友最值得收藏!

Chapter 2:
Introduction to Scikit-Learn and Model Evaluation

Learning Objectives

By the end of this chapter, you will be able to:

  • Explain the response variable
  • Describe the implications of imbalanced data in binary classification
  • Split data into training and testing sets
  • Describe model fitting in scikit-learn
  • Derive several metrics for binary classification
  • Create an ROC curve and a precision-recall curve

This chapter will conclude the initial exploratory analysis and present new tools to perform model evaluation.

主站蜘蛛池模板: 尼木县| 图们市| 巫溪县| 安顺市| 黄龙县| 富民县| 宣威市| 山东省| 宁国市| 专栏| 兴义市| 西乌珠穆沁旗| 章丘市| 明星| 政和县| 东山县| 盈江县| 民权县| 区。| 浦城县| 平塘县| 五台县| 安福县| 玉林市| 沅江市| 富源县| 元谋县| 镇巴县| 蓬溪县| 宽甸| 瓦房店市| 桑植县| 平原县| 静宁县| 平顺县| 五常市| 苗栗市| 神木县| 雷山县| 大埔县| 南通市|