- Data Science Projects with Python
- Stephen Klosterman
- 76字
- 2021-06-11 13:29:11
Chapter 2:
Introduction to Scikit-Learn and Model Evaluation
Learning Objectives
By the end of this chapter, you will be able to:
- Explain the response variable
- Describe the implications of imbalanced data in binary classification
- Split data into training and testing sets
- Describe model fitting in scikit-learn
- Derive several metrics for binary classification
- Create an ROC curve and a precision-recall curve
This chapter will conclude the initial exploratory analysis and present new tools to perform model evaluation.
推薦閱讀
- 大規(guī)模數(shù)據(jù)分析和建模:基于Spark與R
- 數(shù)據(jù)庫原理及應(yīng)用教程(第4版)(微課版)
- 數(shù)據(jù)庫基礎(chǔ)與應(yīng)用:Access 2010
- Developing Mobile Games with Moai SDK
- Visual Studio 2015 Cookbook(Second Edition)
- Python金融大數(shù)據(jù)分析(第2版)
- 企業(yè)大數(shù)據(jù)系統(tǒng)構(gòu)建實戰(zhàn):技術(shù)、架構(gòu)、實施與應(yīng)用
- 數(shù)據(jù)要素五論:信息、權(quán)屬、價值、安全、交易
- Proxmox VE超融合集群實踐真?zhèn)?/a>
- 圖數(shù)據(jù)實戰(zhàn):用圖思維和圖技術(shù)解決復(fù)雜問題
- Power BI智能數(shù)據(jù)分析與可視化從入門到精通
- Oracle數(shù)據(jù)庫管理、開發(fā)與實踐
- Deep Learning with R for Beginners
- 算法設(shè)計與分析
- Unity Game Development Blueprints