舉報

會員
Data Science Projects with Python
DataScienceProjectswithPythonisdesignedtogiveyoupracticalguidanceonindustry-standarddataanalysisandmachinelearningtoolsinPython,withthehelpofrealisticdata.ThebookwillhelpyouunderstandhowyoucanusepandasandMatplotlibtocriticallyexamineadatasetwithsummarystatisticsandgraphs,andextracttheinsightsyouseektoderive.Youwillcontinuetobuildonyourknowledgeasyoulearnhowtopreparedataandfeedittomachinelearningalgorithms,suchasregularizedlogisticregressionandrandomforest,usingthescikit-learnpackage.You’lldiscoverhowtotunethealgorithmstoprovidethebestpredictionsonnewand,unseendata.Asyoudelveintolaterchapters,you’llbeabletounderstandtheworkingandoutputofthesealgorithmsandgaininsightintonotonlythepredictivecapabilitiesofthemodelsbutalsotheirreasonsformakingthesepredictions.Bytheendofthisbook,youwillhavetheskillsyouneedtoconfidentlyusevariousmachinelearningalgorithmstoperformdetaileddataanalysisandextractmeaningfulinsightsfromunstructureddata.
目錄(47章)
倒序
- 封面
- 版權頁
- Preface
- About
- Chapter 1: Data Exploration and Cleaning
- Introduction
- Python and the Anaconda Package Management System
- Different Types of Data Science Problems
- Loading the Case Study Data with Jupyter and pandas
- Data Quality Assurance and Exploration
- Exploring the Financial History Features in the Dataset
- Summary
- Chapter 2: Introduction to Scikit-Learn and Model Evaluation
- Introduction
- Exploring the Response Variable and Concluding the Initial Exploration
- Introduction to Scikit-Learn
- Model Performance Metrics for Binary Classification
- Summary
- Chapter 3: Details of Logistic Regression and Feature Exploration
- Introduction
- Examining the Relationships between Features and the Response
- Univariate Feature Selection: What It Does and Doesn't Do
- Summary
- Chapter 4: The Bias-Variance Trade-off
- Introduction
- Estimating the Coefficients and Intercepts of Logistic Regression
- Cross Validation: Choosing the Regularization Parameter and Other Hyperparameters
- Summary
- Chapter 5: Decision Trees and Random Forests
- Introduction
- Decision trees
- Random Forests: Ensembles of Decision Trees
- Summary
- Chapter 6: Imputation of Missing Data Financial Analysis and Delivery to Client
- Introduction
- Review of Modeling Results
- Dealing with Missing Data: Imputation Strategies
- Final Thoughts on Delivering the Predictive Model to the Client
- Summary
- Appendix
- About
- Chapter 1: Data Exploration and Cleaning
- Chapter 2: Introduction to Scikit-Learn and Model Evaluation
- Chapter 3: Details of Logistic Regression and Feature Exploration
- Chapter 4: The Bias-Variance Trade-off
- Chapter 5: Decision Trees and Random Forests
- Chapter 6: Imputation of Missing Data Financial Analysis and Delivery to Client 更新時間:2021-06-11 13:29:22
推薦閱讀
- 同步:秩序如何從混沌中涌現
- 大規模數據分析和建模:基于Spark與R
- 數據庫技術與應用教程(Access)
- Python數據挖掘:入門、進階與實用案例分析
- Mastering Ninject for Dependency Injection
- Voice Application Development for Android
- Python數據分析、挖掘與可視化從入門到精通
- iOS and OS X Network Programming Cookbook
- WS-BPEL 2.0 Beginner's Guide
- 大數據Hadoop 3.X分布式處理實戰
- 智能數據時代:企業大數據戰略與實戰
- 深入淺出 Hyperscan:高性能正則表達式算法原理與設計
- 數據庫原理與應用
- 智慧的云計算
- 區域云計算和大數據產業發展:浙江樣板
- SQL Server 2012實施與管理實戰指南
- 智慧城市中的大數據分析技術
- Visual FoxPro數據庫技術基礎
- 中國云存儲發展報告
- Unity Game Development Blueprints
- Learn Selenium
- 大數據處理之道
- 數據要素化時代的數據治理
- Learning Software Testing with Test Studio
- 實用數據分析
- 數據自助服務實踐指南:數據開放與洞察提效
- 大數據挖掘技術與應用
- ORACLE RAC日記
- 數據架構之道:數據模型設計與管控
- 工業大數據分析指南