官术网_书友最值得收藏!

Machine Learning for Cybersecurity

In this chapter, we will cover the fundamental techniques of machine learning. We will use these throughout the book to solve interesting cybersecurity problems. We will cover both foundational algorithms, such as clustering and gradient boosting trees, and solutions to common data challenges, such as imbalanced data and false-positive constraints. A machine learning practitioner in cybersecurity is in a unique and exciting position to leverage enormous amounts of data and create solutions in a constantly evolving landscape.

This chapter covers the following recipes:

  • Train-test-splitting your data
  • Standardizing your data
  • Summarizing large data using principal component analysis (PCA)
  • Generating text using Markov chains
  • Performing clustering using scikit-learn
  • Training an XGBoost classifier
  • Analyzing time series using statsmodels
  • Anomaly detection using Isolation Forest
  • Natural language processing (NLP) using hashing vectorizer and tf-idf with scikit-learn
  • Hyperparameter tuning with scikit-optimize

主站蜘蛛池模板: 堆龙德庆县| 安义县| 安国市| 报价| 文化| 南川市| 山西省| 西畴县| 三明市| 乐至县| 淮北市| 额敏县| 云阳县| 古浪县| 上虞市| 株洲县| 昌平区| 亳州市| 阿拉善左旗| 翁源县| 军事| 江川县| 宁化县| 盐山县| 武强县| 互助| 阿拉善盟| 灵川县| 文昌市| 陆川县| 吉安市| 德化县| 连山| 建水县| 建阳市| 松桃| 商洛市| 昌江| 信宜市| 集安市| 柏乡县|