官术网_书友最值得收藏!

Breaking down classification models

As mentioned in Chapter 1, Getting Started with Machine Learning and ML.NET, classification is broken down into two main categories—two-class and multi-class. In a two-class classifier, also known as a binary classifier, the prediction simply returns 0 or 1. In a multi-class problem, a pre-selected range of return labels, such as virus types or car types, is returned.  

There are several binary classification model types available in the machine learning ecosystem to choose from, as follows:

  • AveragedPerceptronTrainer
  • SdcaLogisticRegressionBinaryTrainer
  • SdcaNonCalibratedBinaryTrainer
  • SymbolicSgdLogisticRegressionBinaryTrainer
  • LbfgsLogisticRegressionBinaryTrainer
  • LightGbmBinaryTrainer
  • FastTreeBinaryTrainer
  • FastForestBinaryTrainer
  • GamBinaryTrainer
  • FieldAwareFactorizationMachineTrainer
  • PriorTrainer
  • LinearSvmTrainer

The car-value application we will be creating later in this chapter utilizes the FastTreeBinaryTrainer model.

ML.NET also provides the following multi-class classifiers:

  • LightGbmMulticlassTrainer
  • SdcaMaximumEntropyMulticlassTrainer
  • SdcaNonCalibratedMulticlassTrainer
  • LbfgsMaximumEntropyMulticlassTrainer
  • NaiveBayesMulticlassTrainer
  • OneVersusAllTrainer
  • PairwiseCouplingTrainer

For the multi-class classifier example application, we will be using the SdcaMaximumEntropyMulticlassTrainer model. The reason for this is that Stochastic Dual Coordinate Ascents (SDCAs) can provide a good default performance without tuning.

主站蜘蛛池模板: 新郑市| 金乡县| 漠河县| 深泽县| 呼玛县| 东至县| 济阳县| 通辽市| 定州市| 来安县| 常熟市| 宁陵县| 南陵县| 高平市| 沙雅县| 内乡县| 海伦市| 莱西市| 卢龙县| 鄂尔多斯市| 阳泉市| 班玛县| 枣强县| 临湘市| 宁陕县| 临湘市| 威远县| 桐城市| 新宾| 奈曼旗| 葵青区| 新巴尔虎左旗| 宜宾县| 抚远县| 嵩明县| 临高县| 正定县| 即墨市| 岚皋县| 调兵山市| 密山市|