- Hands-On Machine Learning with ML.NET
- Jarred Capellman
- 158字
- 2021-06-24 16:43:36
Breaking down classification models
As mentioned in Chapter 1, Getting Started with Machine Learning and ML.NET, classification is broken down into two main categories—two-class and multi-class. In a two-class classifier, also known as a binary classifier, the prediction simply returns 0 or 1. In a multi-class problem, a pre-selected range of return labels, such as virus types or car types, is returned.
There are several binary classification model types available in the machine learning ecosystem to choose from, as follows:
- AveragedPerceptronTrainer
- SdcaLogisticRegressionBinaryTrainer
- SdcaNonCalibratedBinaryTrainer
- SymbolicSgdLogisticRegressionBinaryTrainer
- LbfgsLogisticRegressionBinaryTrainer
- LightGbmBinaryTrainer
- FastTreeBinaryTrainer
- FastForestBinaryTrainer
- GamBinaryTrainer
- FieldAwareFactorizationMachineTrainer
- PriorTrainer
- LinearSvmTrainer
The car-value application we will be creating later in this chapter utilizes the FastTreeBinaryTrainer model.
ML.NET also provides the following multi-class classifiers:
- LightGbmMulticlassTrainer
- SdcaMaximumEntropyMulticlassTrainer
- SdcaNonCalibratedMulticlassTrainer
- LbfgsMaximumEntropyMulticlassTrainer
- NaiveBayesMulticlassTrainer
- OneVersusAllTrainer
- PairwiseCouplingTrainer
For the multi-class classifier example application, we will be using the SdcaMaximumEntropyMulticlassTrainer model. The reason for this is that Stochastic Dual Coordinate Ascents (SDCAs) can provide a good default performance without tuning.
- Extending Jenkins
- 大學計算機基礎(第三版)
- SQL Server 2012數據庫技術及應用(微課版·第5版)
- Mastering Natural Language Processing with Python
- PyTorch Artificial Intelligence Fundamentals
- Java技術手冊(原書第7版)
- Learn Swift by Building Applications
- MATLAB實用教程
- Visual Basic程序設計與應用實踐教程
- 概率成形編碼調制技術理論及應用
- Android Wear Projects
- Visual Basic程序設計習題與上機實踐
- 大學計算機基礎實驗指導
- 多媒體技術及應用
- 超簡單:Photoshop+JavaScript+Python智能修圖與圖像自動化處理