官术网_书友最值得收藏!

Data Transformation

One of the fundamental steps of Exploratory Data Analysis (EDA) is data wrangling. In this chapter, we will learn how to merge database-style dataframes, merging on the index, concatenating along an axis, combining data with overlap, reshaping with hierarchical indexing, and pivoting long to wide format. We will come to understand the work that must be completed before transferring our information for further examination, including, removing duplicates, replacing values, renaming axis indexes, discretization and binning, and detecting and filtering outliers. We will work on transforming data using a function, mapping, permutation and random sampling, and computing indicators/dummy variables. 

This chapter will cover the following topics:

Background

Merging database-style dataframes 

Transformation techniques

Benefits of data transformation

主站蜘蛛池模板: 靖远县| 杭州市| 九寨沟县| 北安市| 涿鹿县| 甘德县| 云南省| 从江县| 随州市| 买车| 邢台县| 广丰县| 东乡族自治县| 贵定县| 库尔勒市| 湘阴县| 丹凤县| 丰镇市| 东至县| 富民县| 罗江县| 隆化县| 泾源县| 桓台县| 浏阳市| 长汀县| 浦县| 湘潭县| 河南省| 闽清县| 桐柏县| 无为县| 武宁县| 淮阳县| 义乌市| 天津市| 得荣县| 禹州市| 无锡市| 出国| 隆德县|