- Hands-On C++ Game Animation Programming
- Gabor Szauer
- 820字
- 2021-06-30 14:45:59
Inverse
To find the inverse of a matrix, divide the adjugate of the matrix by its determinant. Since the scalar matrix division is not defined, you will need to multiply the adjugate by the reciprocal of the determinant.
Important note
In this chapter, you will build a matrix multiplication function that uses macros to avoid the need for lower-order matrices. The Chapter03/Sample01 sample in the downloadable materials for this book provides an implementation that utilizes lower-order matrices and is easier to work through with a debugger.
To implement a matrix inverse function, you will first need to be able to find the determinant and adjugate of a 4 x 4 matrix. Both functions rely on being able to find the minor of an element in the matrix:
- Create a new macro in mat4.cpp. This macro will find the minor of one element in the matrix, given an array of floats, and three rows and three columns to cut from the matrix:
#define M4_3X3MINOR(x, c0, c1, c2, r0, r1, r2) \
(x[c0*4+r0]*(x[c1*4+r1]*x[c2*4+r2]-x[c1*4+r2]* \
x[c2*4+r1])-x[c1*4+r0]*(x[c0*4+r1]*x[c2*4+r2]- \
x[c0*4+r2]*x[c2*4+r1])+x[c2*4+r0]*(x[c0*4+r1]* \
x[c1*4+r2]-x[c0*4+r2]*x[c1*4+r1]))
- With the M4_3X3MINOR macro defined, implement the determinant function in mat4.cpp. Since the determinant will multiply each element by the cofactor, some of the values need to be negated. Don't forget to add the function declaration to mat4.h:
float determinant(const mat4& m) {
return m.v[0] *M4_3X3MINOR(m.v, 1, 2, 3, 1, 2, 3)
- m.v[4] *M4_3X3MINOR(m.v, 0, 2, 3, 1, 2, 3)
+ m.v[8] *M4_3X3MINOR(m.v, 0, 1, 3, 1, 2, 3)
- m.v[12]*M4_3X3MINOR(m.v, 0, 1, 2, 1, 2, 3);
}
- Next, implement the adjugate function in mat4.cpp. Don't forget to add the function declaration to mat4.h. Use the M4_3X3MINOR macro to find the matrix of minors, then negate the appropriate elements to create the cofactor matrix. Finally, return the transpose of the cofactor matrix:
mat4 adjugate(const mat4& m) {
//Cof (M[i, j]) = Minor(M[i, j]] * pow(-1, i + j)
mat4 cofactor;
cofactor.v[0] = M4_3X3MINOR(m.v, 1, 2, 3, 1, 2, 3);
cofactor.v[1] =-M4_3X3MINOR(m.v, 1, 2, 3, 0, 2, 3);
cofactor.v[2] = M4_3X3MINOR(m.v, 1, 2, 3, 0, 1, 3);
cofactor.v[3] =-M4_3X3MINOR(m.v, 1, 2, 3, 0, 1, 2);
cofactor.v[4] =-M4_3X3MINOR(m.v, 0, 2, 3, 1, 2, 3);
cofactor.v[5] = M4_3X3MINOR(m.v, 0, 2, 3, 0, 2, 3);
cofactor.v[6] =-M4_3X3MINOR(m.v, 0, 2, 3, 0, 1, 3);
cofactor.v[7] = M4_3X3MINOR(m.v, 0, 2, 3, 0, 1, 2);
cofactor.v[8] = M4_3X3MINOR(m.v, 0, 1, 3, 1, 2, 3);
cofactor.v[9] =-M4_3X3MINOR(m.v, 0, 1, 3, 0, 2, 3);
cofactor.v[10]= M4_3X3MINOR(m.v, 0, 1, 3, 0, 1, 3);
cofactor.v[11]=-M4_3X3MINOR(m.v, 0, 1, 3, 0, 1, 2);
cofactor.v[12]=-M4_3X3MINOR(m.v, 0, 1, 2, 1, 2, 3);
cofactor.v[13]= M4_3X3MINOR(m.v, 0, 1, 2, 0, 2, 3);
cofactor.v[14]=-M4_3X3MINOR(m.v, 0, 1, 2, 0, 1, 3);
cofactor.v[15]= M4_3X3MINOR(m.v, 0, 1, 2, 0, 1, 2);
return transposed(cofactor);
}
- Now that the determinant and adjugate functions are finished, the implementation of the inverse function for a 4 x 4 matrix should be straightforward. Implement the inverse function in mat4.cpp. Don't forget to add the function declaration to mat4.h:
mat4 inverse(const mat4& m) {
float det = determinant(m);
if (det == 0.0f) {
cout << " Matrix determinant is 0\n";
return mat4();
}
mat4 adj = adjugate(m);
return adj * (1.0f / det);
}
- The inverse function takes a constant matrix reference and returns a new matrix that is the inverse of the provided matrix. Implement an invert convenience function in mat4.cpp. This convenience function will invert the matrix inline, modifying the argument. Don't forget to add the function declaration to mat4.h:
void invert(mat4& m) {
float det = determinant(m);
if (det == 0.0f) {
std::cout << "Matrix determinant is 0\n";
m = mat4();
return;
}
m = adjugate(m) * (1.0f / det);
}
Inverting matrices is a relatively expensive function. Matrices that only encode the position and rotation can be inverted faster because the inverse of a 3 x 3 rotation matrix is the same as its transpose.
You will learn how to implement this fast inverse in the next section when implementing the lookAt function.
- 數據科學實戰手冊(R+Python)
- LabVIEW 2018 虛擬儀器程序設計
- SQL Server 2012數據庫技術及應用(微課版·第5版)
- HTML5 移動Web開發從入門到精通(微課精編版)
- 微服務設計原理與架構
- Django Design Patterns and Best Practices
- 精通軟件性能測試與LoadRunner實戰(第2版)
- 薛定宇教授大講堂(卷Ⅳ):MATLAB最優化計算
- Object-Oriented JavaScript(Second Edition)
- Visual C#.NET程序設計
- Elasticsearch Server(Third Edition)
- Android開發三劍客:UML、模式與測試
- ExtJS Web應用程序開發指南第2版
- Raspberry Pi Robotic Projects(Third Edition)
- Mastering Adobe Captivate 7