官术网_书友最值得收藏!

Inverse

To find the inverse of a matrix, divide the adjugate of the matrix by its determinant. Since the scalar matrix division is not defined, you will need to multiply the adjugate by the reciprocal of the determinant.

Important note

In this chapter, you will build a matrix multiplication function that uses macros to avoid the need for lower-order matrices. The Chapter03/Sample01 sample in the downloadable materials for this book provides an implementation that utilizes lower-order matrices and is easier to work through with a debugger.

To implement a matrix inverse function, you will first need to be able to find the determinant and adjugate of a 4 x 4 matrix. Both functions rely on being able to find the minor of an element in the matrix:

  1. Create a new macro in mat4.cpp. This macro will find the minor of one element in the matrix, given an array of floats, and three rows and three columns to cut from the matrix:

    #define M4_3X3MINOR(x, c0, c1, c2, r0, r1, r2) \

       (x[c0*4+r0]*(x[c1*4+r1]*x[c2*4+r2]-x[c1*4+r2]* \

       x[c2*4+r1])-x[c1*4+r0]*(x[c0*4+r1]*x[c2*4+r2]- \

       x[c0*4+r2]*x[c2*4+r1])+x[c2*4+r0]*(x[c0*4+r1]* \

       x[c1*4+r2]-x[c0*4+r2]*x[c1*4+r1]))

  2. With the M4_3X3MINOR macro defined, implement the determinant function in mat4.cpp. Since the determinant will multiply each element by the cofactor, some of the values need to be negated. Don't forget to add the function declaration to mat4.h:

    float determinant(const mat4& m) {

       return  m.v[0] *M4_3X3MINOR(m.v, 1, 2, 3, 1, 2, 3)  

             - m.v[4] *M4_3X3MINOR(m.v, 0, 2, 3, 1, 2, 3)  

             + m.v[8] *M4_3X3MINOR(m.v, 0, 1, 3, 1, 2, 3)  

             - m.v[12]*M4_3X3MINOR(m.v, 0, 1, 2, 1, 2, 3);

    }

  3. Next, implement the adjugate function in mat4.cpp. Don't forget to add the function declaration to mat4.h. Use the M4_3X3MINOR macro to find the matrix of minors, then negate the appropriate elements to create the cofactor matrix. Finally, return the transpose of the cofactor matrix:

    mat4 adjugate(const mat4& m) {

       //Cof (M[i, j]) = Minor(M[i, j]] * pow(-1, i + j)

       mat4 cofactor;

       cofactor.v[0] = M4_3X3MINOR(m.v, 1, 2, 3, 1, 2, 3);

       cofactor.v[1] =-M4_3X3MINOR(m.v, 1, 2, 3, 0, 2, 3);

       cofactor.v[2] = M4_3X3MINOR(m.v, 1, 2, 3, 0, 1, 3);

       cofactor.v[3] =-M4_3X3MINOR(m.v, 1, 2, 3, 0, 1, 2);

       cofactor.v[4] =-M4_3X3MINOR(m.v, 0, 2, 3, 1, 2, 3);

       cofactor.v[5] = M4_3X3MINOR(m.v, 0, 2, 3, 0, 2, 3);

       cofactor.v[6] =-M4_3X3MINOR(m.v, 0, 2, 3, 0, 1, 3);

       cofactor.v[7] = M4_3X3MINOR(m.v, 0, 2, 3, 0, 1, 2);

       cofactor.v[8] = M4_3X3MINOR(m.v, 0, 1, 3, 1, 2, 3);

       cofactor.v[9] =-M4_3X3MINOR(m.v, 0, 1, 3, 0, 2, 3);

       cofactor.v[10]= M4_3X3MINOR(m.v, 0, 1, 3, 0, 1, 3);

       cofactor.v[11]=-M4_3X3MINOR(m.v, 0, 1, 3, 0, 1, 2);

       cofactor.v[12]=-M4_3X3MINOR(m.v, 0, 1, 2, 1, 2, 3);

       cofactor.v[13]= M4_3X3MINOR(m.v, 0, 1, 2, 0, 2, 3);

       cofactor.v[14]=-M4_3X3MINOR(m.v, 0, 1, 2, 0, 1, 3);

       cofactor.v[15]= M4_3X3MINOR(m.v, 0, 1, 2, 0, 1, 2);

       return transposed(cofactor);

    }

  4. Now that the determinant and adjugate functions are finished, the implementation of the inverse function for a 4 x 4 matrix should be straightforward. Implement the inverse function in mat4.cpp. Don't forget to add the function declaration to mat4.h:

    mat4 inverse(const mat4& m) {

        float det = determinant(m);

            

        if (det == 0.0f) {

            cout << " Matrix determinant is 0\n";

            return mat4();

        }

        mat4 adj = adjugate(m);

        return adj * (1.0f / det);

    }

  5. The inverse function takes a constant matrix reference and returns a new matrix that is the inverse of the provided matrix. Implement an invert convenience function in mat4.cpp. This convenience function will invert the matrix inline, modifying the argument. Don't forget to add the function declaration to mat4.h:

    void invert(mat4& m) {

        float det = determinant(m);

        if (det == 0.0f) {

            std::cout << "Matrix determinant is 0\n";

            m = mat4();

            return;

        }

        m = adjugate(m) * (1.0f / det);

    }

Inverting matrices is a relatively expensive function. Matrices that only encode the position and rotation can be inverted faster because the inverse of a 3 x 3 rotation matrix is the same as its transpose.

You will learn how to implement this fast inverse in the next section when implementing the lookAt function.

主站蜘蛛池模板: 台中县| 崇礼县| 德格县| 宁远县| 新泰市| 麦盖提县| 元谋县| 闻喜县| 扎鲁特旗| 湖南省| 延安市| 迁安市| 嘉义市| 宣城市| 慈利县| 区。| 平山县| 教育| 平泉县| 平遥县| 大埔区| 页游| 永寿县| 定西市| 永靖县| 临沭县| 饶河县| 宜城市| 梅河口市| 敖汉旗| 永宁县| 额尔古纳市| 长丰县| 乌鲁木齐县| 沙河市| 台山市| 盖州市| 琼中| 吴忠市| 大田县| 奎屯市|