In the text it was claimed that if is a homothetic technology and and produce the same level of output, then and must also produce the same level of output. Can you prove this rigorously?
證明:首先闡述一下位似技術的定義:
位似技術是一個一次齊次函數的單調變換。換句話說,函數是位似的,當且僅當它可以表示成
,其中是一次齊次的,是單調函數。
由于和′生產同樣水平的產出,從而有,又因為函數是單調的,所以必有
,于是:
即和也一定生產同樣水平的產出.
8.如果是位似函數。證明它在處的技術替代率等于它在處的技術替代率。
Let be a homothetic function. Show that its technical rate of substitution at equals its technical rate of substitution at .
證明:位似函數可以寫成,其中是一次齊次函數,是單調函數。位似函數在處的技術替代率為:
從上式可以看出,一個位似函數的技術替代率與相應的一次齊次函數的技術替代率相等。而一次齊次函數在
處和處的技術替代率相等,因此位似函數在處和處的技術替代率也相等。
9.考慮CES生產函數:。證明可以把它寫成的形式。
Consider the CES technology.Show that we can always write this in the form.
Let be a production set. We say that the technology is additive if in and in implies that
is in . We say that the technology is divisible if in and 0≤≤1 implies that is in . Show that if a technology is both additive and divisible, then must be convex and exhibit constant returns to scale.
For each input requirement set determine if it is regular, monotonic, and/or convex. Assume that the parameters and and the output levels are strictly positive.