舉報

會員
Machine Learning with R
最新章節:
Index
WrittenasatutorialtoexploreandunderstandthepowerofRformachinelearning.Thispracticalguidethatcoversalloftheneedtoknowtopicsinaverysystematicway.Foreachmachinelearningapproach,eachstepintheprocessisdetailed,frompreparingthedataforanalysistoevaluatingtheresults.Thesestepswillbuildtheknowledgeyouneedtoapplythemtoyourowndatasciencetasks.IntendedforthosewhowanttolearnhowtouseR'smachinelearningcapabilitiesandgaininsightfromyourdata.Perhapsyoualreadyknowabitaboutmachinelearning,buthaveneverusedR;orperhapsyouknowalittleRbutarenewtomachinelearning.Ineithercase,thisbookwillgetyouupandrunningquickly.Itwouldbehelpfultohaveabitoffamiliaritywithbasicprogrammingconcepts,butnopriorexperienceisrequired.
目錄(68章)
倒序
- 封面
- 版權信息
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- Preface
- Chapter 1. Introducing Machine Learning
- The origins of machine learning
- Uses and abuses of machine learning
- How do machines learn?
- Steps to apply machine learning to your data
- Choosing a machine learning algorithm
- Using R for machine learning
- Summary
- Chapter 2. Managing and Understanding Data
- R data structures
- Vectors
- Factors
- Managing data with R
- Exploring and understanding data
- Summary
- Chapter 3. Lazy Learning – Classification Using Nearest Neighbors
- Understanding classification using nearest neighbors
- Diagnosing breast cancer with the kNN algorithm
- Summary
- Chapter 4. Probabilistic Learning – Classification Using Naive Bayes
- Understanding naive Bayes
- Example – filtering mobile phone spam with the naive Bayes algorithm
- Summary
- Chapter 5. Divide and Conquer – Classification Using Decision Trees and Rules
- Understanding decision trees
- Example – identifying risky bank loans using C5.0 decision trees
- Understanding classification rules
- Example – identifying poisonous mushrooms with rule learners
- Summary
- Chapter 6. Forecasting Numeric Data – Regression Methods
- Understanding regression
- Example – predicting medical expenses using linear regression
- Understanding regression trees and model trees
- Example – estimating the quality of wines with regression trees and model trees
- Summary
- Chapter 7. Black Box Methods – Neural Networks and Support Vector Machines
- Understanding neural networks
- Modeling the strength of concrete with ANNs
- Understanding Support Vector Machines
- Performing OCR with SVMs
- Summary
- Chapter 8. Finding Patterns – Market Basket Analysis Using Association Rules
- Understanding association rules
- Example – identifying frequently purchased groceries with association rules
- Summary
- Chapter 9. Finding Groups of Data – Clustering with k-means
- Understanding clustering
- Summary
- Chapter 10. Evaluating Model Performance
- Measuring performance for classification
- Estimating future performance
- Summary
- Chapter 11. Improving Model Performance
- Tuning stock models for better performance
- Improving model performance with meta-learning
- Summary
- Chapter 12. Specialized Machine Learning Topics
- Working with specialized data
- Improving the performance of R
- Summary
- Index 更新時間:2021-07-23 15:50:03
推薦閱讀
- 嵌入式系統應用
- 智能工業報警系統
- Data Wrangling with Python
- 電氣控制與PLC技術應用
- 網中之我:何明升網絡社會論稿
- 空間機械臂建模、規劃與控制
- HBase Essentials
- 無人駕駛感知智能
- 實戰Windows Azure
- Kubernetes on AWS
- EDA技術及其創新實踐(Verilog HDL版)
- Arduino創意機器人入門:基于Mind+
- 這樣用Word!
- Learn T-SQL Querying
- 圖像傳感器應用技術
- Learning RSLogix 5000 Programming
- 工業機器人測試與評價技術
- Excel數據透視表應用之道
- 軸向磁場無刷同步電機理論與設計
- J2ME手機游戲設計與開發
- 多媒體技術基礎及應用
- TensorFlow:Powerful Predictive Analytics with TensorFlow
- Big Data Analysis with Python
- 自動化生產線安裝與調試
- 灰色分析技術及程序實現
- 計算機網絡綜合布線實訓教程
- Windows Server 2008系統管理與網絡管理
- 機器人+:正在席卷全球的機器人革命
- 數據庫原理與應用
- 對抗機器學習:機器學習系統中的攻擊和防御