舉報

會員
Data Analysis with R
最新章節:
Index
Whetheryouarelearningdataanalysisforthefirsttime,oryouwanttodeepentheunderstandingyoualreadyhave,thisbookwillprovetoaninvaluableresource.Ifyouarelookingforabooktobringyouallthewaythroughthefundamentalstotheapplicationofadvancedandeffectiveanalyticsmethodologies,andhavesomepriorprogrammingexperienceandamathematicalbackground,thenthisisforyou.
目錄(128章)
倒序
- 封面
- 版權頁
- Credits
- About the Author
- About the Reviewer
- www.PacktPub.com
- Support files eBooks discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. RefresheR
- Navigating the basics
- Getting help in R
- Vectors
- Functions
- Matrices
- Loading data into R
- Working with packages
- Exercises
- Summary
- Chapter 2. The Shape of Data
- Univariate data
- Frequency distributions
- Central tendency
- Spread
- Populations samples and estimation
- Probability distributions
- Visualization methods
- Exercises
- Summary
- Chapter 3. Describing Relationships
- Multivariate data
- Relationships between a categorical and a continuous variable
- Relationships between two categorical variables
- The relationship between two continuous variables
- Visualization methods
- Exercises
- Summary
- Chapter 4. Probability
- Basic probability
- A tale of two interpretations
- Sampling from distributions
- The normal distribution
- Exercises
- Summary
- Chapter 5. Using Data to Reason About the World
- Estimating means
- The sampling distribution
- Interval estimation
- Smaller samples
- Exercises
- Summary
- Chapter 6. Testing Hypotheses
- Null Hypothesis Significance Testing
- Testing the mean of one sample
- Testing two means
- Testing more than two means
- Testing independence of proportions
- What if my assumptions are unfounded?
- Exercises
- Summary
- Chapter 7. Bayesian Methods
- The big idea behind Bayesian analysis
- Choosing a prior
- Who cares about coin flips
- Enter MCMC – stage left
- Using JAGS and runjags
- Fitting distributions the Bayesian way
- The Bayesian independent samples t-test
- Exercises
- Summary
- Chapter 8. Predicting Continuous Variables
- Linear models
- Simple linear regression
- Simple linear regression with a binary predictor
- Multiple regression
- Regression with a non-binary predictor
- Kitchen sink regression
- The bias-variance trade-off
- Linear regression diagnostics
- Advanced topics
- Exercises
- Summary
- Chapter 9. Predicting Categorical Variables
- k-Nearest Neighbors
- Logistic regression
- Decision trees
- Random forests
- Choosing a classifier
- Exercises
- Summary
- Chapter 10. Sources of Data
- Relational Databases
- Using JSON
- XML
- Other data formats
- Online repositories
- Exercises
- Summary
- Chapter 11. Dealing with Messy Data
- Analysis with missing data
- Analysis with unsanitized data
- Other messiness
- Exercises
- Summary
- Chapter 12. Dealing with Large Data
- Wait to optimize
- Using a bigger and faster machine
- Be smart about your code
- Using optimized packages
- Using another R implementation
- Use parallelization
- Using Rcpp
- Be smarter about your code
- Exercises
- Summary
- Chapter 13. Reproducibility and Best Practices
- R Scripting
- R projects
- Version control
- Communicating results
- Exercises
- Summary
- Index 更新時間:2021-07-30 09:55:45
推薦閱讀
- Vue.js設計與實現
- C++程序設計(第3版)
- 機器學習系統:設計和實現
- Web Application Development with R Using Shiny(Second Edition)
- HTML5+CSS3+JavaScript Web開發案例教程(在線實訓版)
- Mastering KnockoutJS
- BIM概論及Revit精講
- Cybersecurity Attacks:Red Team Strategies
- Go語言編程
- Android應用開發深入學習實錄
- 實戰Java高并發程序設計(第2版)
- Mastering Concurrency in Python
- Python機器學習與量化投資
- Java EE基礎實用教程
- 程序員面試金典(第6版)
- 秒懂算法:用常識解讀數據結構與算法
- 像程序員一樣使用MySQL
- 機器人ROS開發實踐
- Python編程零基礎入門
- 算法學習與應用從入門到精通
- Web前端開發實戰教程(HTML5+CSS3+JavaScript)(微課版)
- 換個姿勢學C語言
- Unity3D游戲開發標準教程
- Python架構模式:精通基于Python的API設計、事件驅動架構和包管理
- Python程序設計基礎與應用
- 算法深潛:勇敢者的Python探險
- Clojure Web開發實戰
- 小程序,大未來:微信小程序開發
- Reactive Programming with JavaScript
- 機器學習與深度學習(Python版·微課視頻版)