舉報

會員
Mastering Java for Data Science
最新章節(jié):
Summary
ThisbookisintendedforsoftwareengineerswhoarecomfortablewithdevelopingJavaapplicationsandarefamiliarwiththebasicconceptsofdatascience.Additionally,itwillalsobeusefulfordatascientistswhodonotyetknowJavabutwantorneedtolearnit.Ifyouarewillingtobuildefficientdatascienceapplicationsandbringthemintheenterpriseenvironmentwithoutchangingtheexistingstack,thisbookisforyou!
目錄(179章)
倒序
- 封面
- 版權信息
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Downloading the example code
- Downloading the color images of this book
- Errata
- Piracy
- Questions
- Data Science Using Java
- Data science
- Machine learning
- Supervised learning
- Unsupervised learning
- Clustering
- Dimensionality reduction
- Natural Language Processing
- Data science process models
- CRISP-DM
- A running example
- Data science in Java
- Data science libraries
- Data processing libraries
- Math and stats libraries
- Machine learning and data mining libraries
- Text processing
- Summary
- Data Processing Toolbox
- Standard Java library
- Collections
- Input/Output
- Reading input data
- Writing ouput data
- Streaming API
- Extensions to the standard library
- Apache Commons
- Commons Lang
- Commons IO
- Commons Collections
- Other commons modules
- Google Guava
- AOL Cyclops React
- Accessing data
- Text data and CSV
- Web and HTML
- JSON
- Databases
- DataFrames
- Search engine - preparing data
- Summary
- Exploratory Data Analysis
- Exploratory data analysis in Java
- Search engine datasets
- Apache Commons Math
- Joinery
- Interactive Exploratory Data Analysis in Java
- JVM languages
- Interactive Java
- Joinery shell
- Summary
- Supervised Learning - Classification and Regression
- Classification
- Binary classification models
- Smile
- JSAT
- LIBSVM and LIBLINEAR
- Encog
- Evaluation
- Accuracy
- Precision recall and F1
- ROC and AU ROC (AUC)
- Result validation
- K-fold cross-validation
- Training validation and testing
- Case study - page prediction
- Regression
- Machine learning libraries for regression
- Smile
- JSAT
- Other libraries
- Evaluation
- MSE
- MAE
- Case study - hardware performance
- Summary
- Unsupervised Learning - Clustering and Dimensionality Reduction
- Dimensionality reduction
- Unsupervised dimensionality reduction
- Principal Component Analysis
- Truncated SVD
- Truncated SVD for categorical and sparse data
- Random projection
- Cluster analysis
- Hierarchical methods
- K-means
- Choosing K in K-Means
- DBSCAN
- Clustering for supervised learning
- Clusters as features
- Clustering as dimensionality reduction
- Supervised learning via clustering
- Evaluation
- Manual evaluation
- Supervised evaluation
- Unsupervised Evaluation
- Summary
- Working with Text - Natural Language Processing and Information Retrieval
- Natural Language Processing and information retrieval
- Vector Space Model - Bag of Words and TF-IDF
- Vector space model implementation
- Indexing and Apache Lucene
- Natural Language Processing tools
- Stanford CoreNLP
- Customizing Apache Lucene
- Machine learning for texts
- Unsupervised learning for texts
- Latent Semantic Analysis
- Text clustering
- Word embeddings
- Supervised learning for texts
- Text classification
- Learning to rank for information retrieval
- Reranking with Lucene
- Summary
- Extreme Gradient Boosting
- Gradient Boosting Machines and XGBoost
- Installing XGBoost
- XGBoost in practice
- XGBoost for classification
- Parameter tuning
- Text features
- Feature importance
- XGBoost for regression
- XGBoost for learning to rank
- Summary
- Deep Learning with DeepLearning4J
- Neural Networks and DeepLearning4J
- ND4J - N-dimensional arrays for Java
- Neural networks in DeepLearning4J
- Convolutional Neural Networks
- Deep learning for cats versus dogs
- Reading the data
- Creating the model
- Monitoring the performance
- Data augmentation
- Running DeepLearning4J on GPU
- Summary
- Scaling Data Science
- Apache Hadoop
- Hadoop MapReduce
- Common Crawl
- Apache Spark
- Link prediction
- Reading the DBLP graph
- Extracting features from the graph
- Node features
- Negative sampling
- Edge features
- Link Prediction with MLlib and XGBoost
- Link suggestion
- Summary
- Deploying Data Science Models
- Microservices
- Spring Boot
- Search engine service
- Online evaluation
- A/B testing
- Multi-armed bandits
- Summary 更新時間:2021-07-02 23:44:57
推薦閱讀
- 使用GitOps實現(xiàn)Kubernetes的持續(xù)部署:模式、流程及工具
- iOS and OS X Network Programming Cookbook
- 大數據營銷:如何讓營銷更具吸引力
- Splunk智能運維實戰(zhàn)
- SQL Server深入詳解
- Oracle數據庫管理、開發(fā)與實踐
- Visual FoxPro數據庫技術基礎
- 數據挖掘競賽實戰(zhàn):方法與案例
- 數據中心經營之道
- 云工作時代:科技進化必將帶來的新工作方式
- 算法設計與問題求解(第2版):計算思維培養(yǎng)
- 計算機應用實務(第3版)
- 商業(yè)銀行數據庫管理實踐
- 21天學通Oracle(第2版)
- Tableau數據可視化實戰(zhàn)
- 數據隱私與數據治理:概念與技術
- SQL Server 2008數據庫應用技術(第三版)
- 讓Oracle跑得更快:Oracle 10g性能分析與優(yōu)化思路
- OceanBase數據庫源碼解析
- Hadoop應用實戰(zhàn)
- 一本書讀懂移動大數據
- Creating Concrete5 Themes
- 網絡科學與網絡大數據結構挖掘
- 數據結構解析與基礎實驗教程
- DM8數據中心解決方案:達夢實時同步工具
- 文件系統(tǒng)技術內幕:大數據時代海量數據存儲之道
- 突出重圍:Transact-SQL管理與開發(fā)實例精粹
- Metasploit滲透測試與開發(fā)實踐指南
- Learning NGUI for Unity
- Near Field Communication with Android Cookbook