- Mastering Java for Data Science
- Alexey Grigorev
- 78字
- 2021-07-02 23:44:36
Accessing data
By now we already have spent a lot of time describing how to read and write data. But there is much more to that: data often comes in different formats such as CSV, HTML, or JSON or it can be stored in a database. Knowing how to access and process this data is important for Data Science and now we will describe in detail how to do it for the most common data formats and sources.
推薦閱讀
- 大規(guī)模數(shù)據(jù)分析和建模:基于Spark與R
- ETL數(shù)據(jù)整合與處理(Kettle)
- 數(shù)據(jù)庫(kù)基礎(chǔ)與應(yīng)用:Access 2010
- App+軟件+游戲+網(wǎng)站界面設(shè)計(jì)教程
- Creating Mobile Apps with Sencha Touch 2
- Oracle RAC 11g實(shí)戰(zhàn)指南
- Learn Unity ML-Agents:Fundamentals of Unity Machine Learning
- MySQL 8.x從入門到精通(視頻教學(xué)版)
- 基于OPAC日志的高校圖書(shū)館用戶信息需求與檢索行為研究
- 深入淺出 Hyperscan:高性能正則表達(dá)式算法原理與設(shè)計(jì)
- Chef Essentials
- SAS金融數(shù)據(jù)挖掘與建模:系統(tǒng)方法與案例解析
- Google Cloud Platform for Architects
- MySQL 8.0從入門到實(shí)戰(zhàn)
- 數(shù)據(jù)庫(kù)高效優(yōu)化:架構(gòu)、規(guī)范與SQL技巧