首頁 > 計算機網絡 >
編程語言與程序設計
> Statistical Application Development with R and Python(Second Edition)最新章節目錄
舉報

會員
Statistical Application Development with R and Python(Second Edition)
最新章節:
Index
IfyouwanttohaveabriefunderstandingofthenatureofdataandperformadvancedstatisticalanalysisusingbothRandPython,thenthisbookiswhatyouneed.Nopriorknowledgeisrequired.Aspiringdatascientist,RuserstryingtolearnPythonandviceversa
目錄(80章)
倒序
- 封面
- 書名頁
- Statistical Application Development with R and Python - Second Edition
- Credits
- About the Author
- Acknowledgment
- About the Reviewers
- www.PacktPub.com
- eBooks discount offers and more
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Data Characteristics
- Questionnaire and its components
- Experiments with uncertainty in computer science
- Installing and setting up R
- Using R packages
- Python installation and setup
- IDEs for R and Python
- The companion code bundle
- Discrete distributions
- Continuous distributions
- Summary
- Chapter 2. Import/Export Data
- Packages and settings – R and Python
- Understanding data.frame and other formats
- Using utils and the foreign packages
- Exporting data/graphs
- Pop quiz
- Summary
- Chapter 3. Data Visualization
- Packages and settings – R and Python
- Visualization techniques for categorical data
- Visualization techniques for continuous variable data
- Pareto chart
- A brief peek at ggplot2
- Summary
- Chapter 4. Exploratory Analysis
- Packages and settings – R and Python
- Essential summary statistics
- Techniques for exploratory analysis
- Summary
- Chapter 5. Statistical Inference
- Packages and settings – R and Python
- Maximum likelihood estimator
- Confidence intervals
- Hypothesis testing
- Summary
- Chapter 6. Linear Regression Analysis
- Packages and settings - R and Python
- The essence of regression
- The simple linear regression model
- Multiple linear regression model
- Regression diagnostics
- Model selection
- Summary
- Chapter 7. Logistic Regression Model
- Packages and settings – R and Python
- Model validation and diagnostics
- Logistic regression for the German credit screening dataset
- Summary
- Chapter 8. Regression Models with Regularization
- Packages and settings – R and Python
- Regression spline
- Ridge regression for linear models
- Summary
- Chapter 9. Classification and Regression Trees
- Packages and settings – R and Python
- Splitting the data
- Summary
- Chapter 10. CART and Beyond
- Packages and settings – R and Python
- Understanding bagging
- Summary
- Index 更新時間:2021-07-02 18:44:27
推薦閱讀
- Java Web基礎與實例教程(第2版·微課版)
- 名師講壇:Java微服務架構實戰(SpringBoot+SpringCloud+Docker+RabbitMQ)
- PhoneGap Mobile Application Development Cookbook
- Drupal 8 Configuration Management
- 編程數學
- Salesforce Reporting and Dashboards
- HTML 5與CSS 3權威指南(第3版·上冊)
- 新一代SDN:VMware NSX 網絡原理與實踐
- GameMaker Essentials
- 精通MySQL 8(視頻教學版)
- SQL Server 2012 數據庫應用教程(第3版)
- 高性能MVVM框架的設計與實現:San
- Node.js核心技術教程
- SFML Essentials
- Performance Testing with JMeter 3(Third Edition)
- Scratch 3少兒交互式游戲編程一本通
- Microsoft Hyper-V PowerShell Automation
- Kotlin for Enterprise Applications using Java EE
- 程序員面試筆試通關寶典
- Neural Networks with R
- Hands-On RESTful API Design Patterns and Best Practices
- 公安計算機應用基礎
- 你不知道的JavaScript(下卷)
- HTML5、CSS和JavaScript開發
- Arduino: Building exciting LED based projects and espionage devices
- Asynchronous Android
- Learning Xamarin Studio
- Python數據結構學習筆記
- Python程序設計基礎
- WiX Cookbook