目錄(137章)
倒序
- 封面
- 版權信息
- Credits
- About the Authors
- About the Reviewer
- www.PacktPub.com
- Why subscribe?
- Customer Feedback
- Dedication
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Downloading the example code
- Downloading the color images of this book
- Errata
- Piracy
- Questions
- Introduction to Data Mining and Predictive Analytics
- Introduction to data mining
- CRISP-DM overview
- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment
- Learning more about CRISP-DM
- The data mining process (as a case study)
- Summary
- The Basics of Using IBM SPSS Modeler
- Introducing the Modeler graphic user interface
- Stream canvas
- Palettes
- Modeler menus
- Toolbar
- Manager tabs
- Project window
- Building streams
- Mouse buttons
- Adding nodes
- Editing nodes
- Deleting nodes
- Building a stream
- Connecting nodes
- Deleting connections
- Modeler stream rules
- Help options
- Help menu
- Dialog help
- Summary
- Importing Data into Modeler
- Data structure
- Var. File source node
- Var. File source node File tab
- Var. File source node Data tab
- Var. File source node Filter tab
- Var. File source node Types tab
- Var. File source node Annotations tab
- Viewing data
- Excel source node
- Database source node
- Levels of measurement and roles
- Summary
- Data Quality and Exploration
- Data Audit node options
- Data Audit node results
- The Quality tab
- Missing data
- Ways to address missing data
- Defining missing values in the Type node
- Imputing missing values with the Data Audit node
- Summary
- Cleaning and Selecting Data
- Selecting cases
- Expression Builder
- Sorting cases
- Identifying and removing duplicate cases
- Reclassifying categorical values
- Summary
- Combining Data Files
- Combining data files with the Append node
- Removing fields with the Filter node
- Combining data files with the Merge node
- The Filter tab
- The Optimization tab
- Summary
- Deriving New Fields
- Derive – Formula
- Derive – Flag
- Derive – Nominal
- Derive – Conditional
- Summary
- Looking for Relationships Between Fields
- Relationships between categorical fields
- Distribution node
- Matrix node
- Relationships between categorical and continuous fields
- Histogram node
- Means node
- Relationships between continuous fields
- Plot node
- Statistics node
- Summary
- Introduction to Modeling Options in IBM SPSS Modeler
- Classification
- Categorical targets
- Numeric targets
- The Auto nodes
- Data reduction modeling nodes
- Association
- Segmentation
- Choosing between models
- Summary
- Decision Tree Models
- Decision tree theory
- CHAID theory
- How CHAID processes different types of input variables
- Stopping rules
- Building a CHAID Model
- Partition node
- Overfitting
- CHAID dialog options
- CHAID results
- Summary
- Model Assessment and Scoring
- Contrasting model assessment with the Evaluation phase
- Model assessment using the Analysis node
- Modifying CHAID settings
- Model comparison using the Analysis node
- Model assessment and comparison using the Evaluation node
- Scoring new data
- Exporting predictions
- Summary 更新時間:2021-07-02 20:05:09
推薦閱讀
- 高效能辦公必修課:Word圖文處理
- 商戰數據挖掘:你需要了解的數據科學與分析思維
- 圖解PLC控制系統梯形圖和語句表
- 數據運營之路:掘金數據化時代
- 工業機器人入門實用教程(KUKA機器人)
- Windows程序設計與架構
- Hybrid Cloud for Architects
- 聊天機器人:入門、進階與實戰
- Photoshop行業應用基礎
- 基于企業網站的顧客感知服務質量評價理論模型與實證研究
- 水晶石影視動畫精粹:After Effects & Nuke 影視后期合成
- 大數據案例精析
- INSTANT VMware vCloud Starter
- 寒江獨釣:Windows內核安全編程
- 網絡安全概論
- 人工智能:重塑個人、商業與社會
- Hadoop大數據開發基礎
- 站酷志:資深設計師的Photoshop創意課
- 機器學習公式詳解
- 數字孿生技術與工程實踐:模型+數據驅動的智能系統
- Hands-On Edge Analytics with Azure IoT
- 機器人制作入門(第3版)
- 嵌入式系統開發
- TensorFlow深度學習應用實踐
- Mac OS X 10.8 Mountain Lion中文版入門
- Excel 2003中文電子表格5日通
- 人工智能與大數據技術導論
- Photoshop應用基礎
- Using OpenRefine
- 三維動畫綜合實訓