舉報

會員
Machine Learning Solutions
最新章節(jié):
Index
Thisbookisfortheintermediateuserssuchasmachinelearningengineers,dataengineers,datascientists,andmore,whowanttosolvesimpletocomplexmachinelearningproblemsintheirday-to-dayworkandbuildpowerfulandefficientmachinelearningmodels.AbasicunderstandingofthemachinelearningconceptsandsomeexperiencewithPythonprogrammingisallyouneedtogetstartedwiththisbook.
目錄(148章)
倒序
- 封面
- Machine Learning Solutions
- Why subscribe?
- PacktPub.com
- Foreword
- Contributors
- About the author
- About the reviewer
- Packt is Searching for Authors Like You
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Get in touch
- Chapter 1. Credit Risk Modeling
- Introducing the problem statement
- Understanding the dataset
- Feature engineering for the baseline model
- Selecting machine learning algorithms
- Training the baseline model
- Understanding the testing matrix
- Testing the baseline model
- Problems with the existing approach
- Optimizing the existing approach
- Implementing the revised approach
- Best approach
- Summary
- Chapter 2. Stock Market Price Prediction
- Introducing the problem statement
- Collecting the dataset
- Understanding the dataset
- Data preprocessing and data analysis
- Feature engineering
- Selecting the Machine Learning algorithm
- Training the baseline model
- Understanding the testing matrix
- Testing the baseline model
- Exploring problems with the existing approach
- Understanding the revised approach
- Implementing the revised approach
- The best approach
- Summary
- Chapter 3. Customer Analytics
- Introducing customer segmentation
- Understanding the datasets
- Building the baseline approach
- Building the revised approach
- The best approach
- Customer segmentation for various domains
- Summary
- Chapter 4. Recommendation Systems for E-Commerce
- Introducing the problem statement
- Understanding the datasets
- Building the baseline approach
- Building the revised approach
- The best approach
- Summary
- Chapter 5. Sentiment Analysis
- Introducing problem statements
- Understanding the dataset
- Building the training and testing datasets for the baseline model
- Feature engineering for the baseline model
- Selecting the machine learning algorithm
- Training the baseline model
- Understanding the testing matrix
- Testing the baseline model
- Problem with the existing approach
- How to optimize the existing approach
- Implementing the revised approach
- The best approach
- Summary
- Chapter 6. Job Recommendation Engine
- Introducing the problem statement
- Understanding the datasets
- Building the baseline approach
- Building the revised approach
- The best approach
- Summary
- Chapter 7. Text Summarization
- Understanding the basics of summarization
- Introducing the problem statement
- Understanding datasets
- Building the baseline approach
- Building the revised approach
- The best approach
- Summary
- Chapter 8. Developing Chatbots
- Introducing the problem statement
- Understanding datasets
- Building the basic version of a chatbot
- Implementing the rule-based chatbot
- Testing the rule-based chatbot
- Problems with the existing approach
- Implementing the revised approach
- Testing the revised approach
- Problems with the revised approach
- The best approach
- Discussing the hybrid approach
- Summary
- Chapter 9. Building a Real-Time Object Recognition App
- Introducing the problem statement
- Understanding the dataset
- Transfer Learning
- Setting up the coding environment
- Features engineering for the baseline model
- Selecting the machine learning algorithm
- Building the baseline model
- Understanding the testing metrics
- Testing the baseline model
- Problem with existing approach
- How to optimize the existing approach
- Implementing the revised approach
- The best approach
- Summary
- Chapter 10. Face Recognition and Face Emotion Recognition
- Introducing the problem statement
- Setting up the coding environment
- Understanding the concepts of face recognition
- Approaches for implementing face recognition
- Understanding the dataset for face emotion recognition
- Understanding the concepts of face emotion recognition
- Building the face emotion recognition model
- Understanding the testing matrix
- Testing the model
- Problems with the existing approach
- How to optimize the existing approach
- The best approach
- Summary
- Chapter 11. Building Gaming Bot
- Introducing the problem statement
- Setting up the coding environment
- Understanding Reinforcement Learning (RL)
- Basic Atari gaming bot
- Implementing the basic version of the gaming bot
- Building the Space Invaders gaming bot
- Implementing the Space Invaders gaming bot
- Building the Pong gaming bot
- Implementing the Pong gaming bot
- Just for fun - implementing the Flappy Bird gaming bot
- Summary
- Appendix A. List of Cheat Sheets
- Cheat sheets
- Summary
- Appendix B. Strategy for Wining Hackathons
- Strategy for winning hackathons
- Keeping up to date
- Summary
- Index 更新時間:2021-08-27 18:54:25
推薦閱讀
- Intel FPGA/CPLD設(shè)計(基礎(chǔ)篇)
- ATmega16單片機項目驅(qū)動教程
- Deep Learning with PyTorch
- 電腦常見故障現(xiàn)場處理
- Intel FPGA/CPLD設(shè)計(高級篇)
- 現(xiàn)代辦公設(shè)備使用與維護
- Apple Motion 5 Cookbook
- 微服務(wù)分布式架構(gòu)基礎(chǔ)與實戰(zhàn):基于Spring Boot + Spring Cloud
- STM32嵌入式技術(shù)應(yīng)用開發(fā)全案例實踐
- 基于PROTEUS的電路設(shè)計、仿真與制板
- IP網(wǎng)絡(luò)視頻傳輸:技術(shù)、標(biāo)準(zhǔn)和應(yīng)用
- Arduino項目開發(fā):智能生活
- Arduino項目案例:游戲開發(fā)
- 微服務(wù)實戰(zhàn)(Dubbox +Spring Boot+Docker)
- 筆記本電腦維修技能實訓(xùn)
- Arduino案例實戰(zhàn)(卷Ⅳ)
- ActionScript Graphing Cookbook
- 計算機組裝與維護教程
- Hands-On Game Development with WebAssembly
- PLC技術(shù)實用教程
- 24小時學(xué)會電腦組裝與維護
- 現(xiàn)場總線技術(shù)及應(yīng)用
- Spring Cloud Alibaba大型微服務(wù)架構(gòu)項目實戰(zhàn)(下冊)
- 超炫的30個單片機顯示驅(qū)動項目
- 硅谷之火:個人計算機的誕生與衰落(第3版)
- Raspberry Pi Computer Architecture Essentials
- Linux虛擬化數(shù)據(jù)中心實戰(zhàn)
- Building Forms with Vue.js
- 創(chuàng)客三級跳:Arduino的項目式學(xué)習(xí)
- 數(shù)據(jù)存儲架構(gòu)與技術(shù)(第2版)