- 鈣鈦礦發(fā)光材料與器件
- 孟鴻
- 3105字
- 2025-03-28 17:45:21
參考文獻(xiàn)
[1] You Y M, Liao W Q, Zhao D, et al. An organic-inorganic perovskite ferroelectric with large piezoe-lectric response[J]. Science, 2017, 357(6348): 306-309.
[2] M?LLER C K. Crystal structure and photoconductivity of caesium plumbohalides[J]. Nature, 1958, 182(4647): 1436-1436.
[3] Bansal V, Poddar P, Ahmad A, et al. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles[J]. Journal of the American Chemical Society, 2006, 128(36): 11958-11963.
[4 ] Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [ J]. Zeitschrift für Physik B Condensed Matter, 1986, 64(2): 189-193.
[5] Jin S, Tiefel T H, McCormack M, et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J]. Science, 1994, 264(5157): 413-415.
[6] Miao X, Zhang L, Wu L, et al. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation[J]. Nature Communications, 2019, 10(1): 1-7.
[7] Zhao Y C, Zhou W K, Zhou X, et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications[J]. Light: Science&Applications, 2017, 6(5):16243-16243.
[8] Mitzi D B. Thin-film deposition of organic-inorganic hybrid materials[ J]. Chemistry of Materials, 2001, 13(10): 3283-3298.
[9] Quan L N, Garcia de Arquer F P, Sabatini R P, et al. Perovskites for light emission[J]. Advanced Materials, 2018, 30(45): 1801996.
[10] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-lightsensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[11] Mesquita I, Andrade L, Mendes A. Perovskite solar cells: Materials, configurations and stabi-lity [J]. Renewable and Sustainable Energy Reviews, 2018, 82(3): 2471-2489.
[12] Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3 [ J]. The journal of physical chemistry letters, 2017, 8(2): 489-493.
[13] Yettapu G R, Talukdar D, Sarkar S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths [ J]. Nano letters, 2016, 16(8): 4838-4848.
[14] Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in orga-nolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522.
[15] Brandt R E, Stevanovic'V, Ginley D S, et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites[J]. MRS Communications, 2015, 5(2): 265-275.
[16] Shi Z, Li Y, Zhang Y, et al. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure[J]. Nano letters, 2017, 17(1): 313-321.
[17] Han B, Cai B, Shan Q, et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsP-bI3 phase engineering[J]. Advanced Functional Materials, 2018, 28(47): 1804285.
[18] Ban M, Zou Y, Rivett J P H, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring[ J]. Nature Communi-cations, 2018, 9(1): 1-10.
[19] Protesescu L, Yakunin S, Kumar S, et al. Dismantling the “ red wall” of colloidal perovskites:Highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals [ J]. ACS Nano, 2017, 11(3): 3119-3134.
[20] Schweinberger F F, Berr M J, Doblinger M, et al. Cluster size effects in the photocatalytic hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(36): 13262-13265.
[21] Zhu X Y, Podzorov V. Charge carriers in hybrid organic inorganic lead halide perovskitesmight be protected as large polarons [ J ]. The journal of physical chemistry letters, 2015, 6 ( 23 ):4758-4761.
[22] Smith M D, Karunadasa H I. White light emission from layered halide perovskites[J]. Accounts of Chemical Research, 2018, 51(3): 619-627.
[23] Tokizaki T, Makimura T, Akiyama H, et al. Femtosecond cascade-excitation spectroscopy for nonra-diative deexcitation and lattice relaxation of the self-trapped exciton in NaCl[ J]. Physical Review Letters, 1991, 67(19): 2701-2704.
[24] Efros A L, Rosen M, Kuno M, et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states[ J]. Physical Review B, 1996, 54 (7):4843-4856.
[25] Franceschetti A, Fu H, Wang L W, et al. Many-body pseudopotential theory of excitons in InP and CdSe quantum dots[J]. Physical Review B, 1999, 60(3): 1819-1829.
[26] Leung K, Pokrant S, Whaley K B. Exciton fine structure in CdSe nanoclusters[J]. Physical Review B, 1998, 57(19): 12291-12301.
[27] Crooker S A, Barrick T, Hollingsworth J A, et al. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime [ J]. Applied Physics Letters, 2003, 82(17): 2793-2795.
[28] Labeau O, Tamarat P, Lounis B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots[J]. Physical Review Letters, 2003, 90(25): 257404.
[29] Donega C M, Bode M, Meijerink A. Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots[J]. Physical Review B, 2006, 74(8): 085320.
[30] Wang H, Donega C M, Meijerink A, et al. Ultrafast exciton dynamics in CdSe quantum dots studied from bleaching recovery and fluorescence transients[J]. The Journal of Physical Chemistry B, 2006, 110: 733-737.
[31] Zhao Q, Peter A, Wesley B J, et al. Shape dependence of band-edge exciton fine structure in CdSe nanocrystals[J]. Nano letters, 2007, 7(11): 3274-3280.
[32] Oron D, Aharoni A, Donega C M, et al. Universal role of discrete acoustic phonons in the low-tem-perature optical emission of colloidal quantum dots [ J ]. Physical Review Letters, 2009, 102 (17): 177402.
[33] Schaller R D, Crooker S A, Bussian D A, et al. Revealing the exciton fine structure of PbSe nano-crystal quantum dots using optical spectroscopy in high magnetic fields[J]. Physical Review Letters, 2010, 105(6): 067403.
[34] Richter J M, Abdi-Jalebi M, Sadhanala A, et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling [ J ]. Nature Communications, 2016, 7 (1): 13941.
[35] Lin Q, Armin A, Nagiri R C, et al. Electro-optics of perovskite solar cells[J]. Nature Photo-nics, 2014, 9(2): 106-112.
[36] Saba M, Cadelano M, Marongiu D, et al. Correlated electron-hole plasma in organometal perovskites [J]. Nature Communications, 2014, 5: 5049.
[37] Deschler F, Price M, Pathak S, et al. High photoluminescence efficiency and optically pumped las-ing in solution-processed mixed halide perovskite semiconductors[J]. The journal of physical chem-istry letters, 2014, 5(8): 1421-1426.
[38] Wang H, Zhang X, Wu Q, et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices [ J ]. Nature Communications, 2019, 10 (1): 665.
[39] Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692.
[40] Congreve D N, Weidman M C, Seitz M, et al. Tunable light-emitting diodes utilizing quantum-con-fined layered perovskite emitters[J]. ACS Photonics, 2017, 4(3): 476-481.
[41] Li G, Tan Z K, Di D, et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix[J]. Nano letters, 2015, 15(4): 2640-2644.
[42] Hutter E M, Gelvez-Rueda M C, Osherov A, et al. Direct-indirect character of the bandgap in meth-ylammonium lead iodide perovskite[J]. Nature Materials, 2017, 16(1): 115-120.
[43] Etienne T, Mosconi E, De Angelis F. Dynamical origin of the Rashba effect in organohalide lead perovskites: A key to suppressed carrier recombination in perovskite solar cells? [J]. The journal of physical chemistry letters, 2016, 7(9): 1638-1645.
[44] Davies C L, Filip M R, Patel J B, et al. Bimolecular recombination in methylammonium lead triio-dide perovskite is an inverse absorption process[J]. Nature Communications, 2018, 9(1): 293.
[45] Niesner D, Wilhelm M, Levchuk I, et al. Giant Rashba splitting in CH3 NH3 PbBr3 organic-inorganic perovskite[J]. Physical Review Letters, 2016, 117(12): 126401.
[46] Isarov M, Tan L Z, Bodnarchuk M I, et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements [ J ]. Nano letters, 2017, 17 ( 8 ):5020-5026.
[47] Stroppa A, Di Sante D, Barone P, et al. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites[J]. Nature Communications, 2014, 5: 5900.
[48] March S A, Riley D B, Clegg C, et al. Four-wave mixing in perovskite photovoltaic materials reveals long dephasing times and weaker many-body interactions than GaAs[ J]. ACS Photonics, 2017, 4 (6): 1515-1521.
[49] Elkins M H, Pensack R, Proppe A H, et al. Biexciton resonances reveal exciton localization in stacked perovskite quantum wells [ J]. The journal of physical chemistry letters, 2017, 8 ( 16 ):3895-3901.
[50] Richter J M, Branchi F, Valduga de Almeida Camargo F, et al. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy[J]. Nature Communica-tions, 2017, 8(1): 376.
[51] Price M B, Butkus J, Jellicoe T C, et al. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites[J]. Nature Communications, 2015, 6: 8420.
[52] Yang J, Wen X, Xia H, et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites[J]. Nature Communications, 2017, 8: 14120.
[53] Yang Y, Ostrowski D P, France R M, et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites[J]. Nature Photonics, 2015, 10(1): 53-59.
[54] Chang A Y, Cho Y J, Chen K C, et al. Slow organic-to-inorganic sub-lattice thermalization in meth-ylammonium lead halide perovskites observed by ultrafast photoluminescence[ J]. Advanced Energy Materials, 2016, 6(15): 1600422.
[55] Stranks S D, Burlakov V M, Leijtens T, et al. Recombination kinetics in organic-inorganic perovs-kites: Excitons, free charge, and subgap states [ J ]. Physical Review Applied, 2014, 2 (3): 034007.
[56] Konstantinos C, Mitzi D B. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers [ J]. Chemistry of Materials, 1999, 11 (11): 3028-3030.
[57] Wu X, Trinh M T, Niesner D, et al. Trap states in lead iodide perovskites[J]. Journal of the Amer-ican Chemical Society, 2015, 137(5): 2089-2096.
[58] Xiao Z, Kerner R A, Zhao L, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites[J]. Nature Photonics, 2017, 11(2): 108-115.
[59] Yuan M, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes [J]. Nature Nanotechnology, 2016, 11(10): 872-877.
[60] Quan L N, Zhao Y, Garcia de Arquer F P, et al. Tailoring the energy landscape in quasi-2D halide perovskites for efficient light emission[J]. Nano letters, 2017, 17(6): 3701-3709.
[61] Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Advanced Materials, 2016, 28(39): 8718-8725.
[62] Milot R L, Sutton R J, Eperon G E, et al. Charge-carrier dynamics in 2D hybrid metal-halide per-ovskites[J]. Nano letters, 2016, 16(11): 7001-7007.
[63] Yang Y, Yang M, Li Z, et al. Comparison of recombination dynamics in CH3 NH3 PbBr3 and CH3 NH3 PbI3 perovskite films: Influence of exciton binding energy [ J]. The journal of physical chemistry letters, 2015, 6(23): 4688-4692.
[64] Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices[ J]. Nature Nanotechnology, 2015, 10(5): 391-402.
[65] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photon-ics, 2014, 8(7): 506-514.
[66] De Wolf S, Holovsky J, Moon S J, et al. Organometallic halide perovskites: Sharp opticalabsorption edge and its relation to photovoltaic performance [ J]. The journal of physical chemistry letters, 2014, 5(6): 1035-1039.
[67] Sadhanala A, Deschler F, Thomas T H, et al. Preparation of single-phase films of CH3 NH3 Pb(I1-x Brx)3 with sharp optical band edges[ J]. The journal of physical chemistry letters, 2014, 5(15):2501-2505.
[68] Johnson S R, Tiedje T. Temperature dependence of the Urbach edge in GaAs[ J]. Journal of Ap-plied Physics, 1995, 78(9): 5609.
[69] Wehrenfennig C, Liu M, Snaith H J, et al. Homogeneous emission line broadening in the organo lead halide perovskite CH3 NH3 PbI3-x Clx [ J]. The journal of physical chemistry letters, 2014, 5 (8): 1300-1306.
[70] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation[J]. Nature, 2018, 555(7697): 497-501.
[71] Stranks S D. Nonradiative losses in metal halide perovskites[J]. ACS Energy Letters, 2017, 2(7):1515-1525.
[72] Wehrenfennig C, Eperon G E, Johnston M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589.
[73] Draguta S, Thakur S, Morozov Y V, et al. Spatially non-uniform trap state densities in solution-pro-cessed hybrid perovskite thin films[J]. The journal of physical chemistry letters, 2016, 7(4): 715-721.
[74] Wu C, Wu T, Yang Y, et al. Alternative type two-dimensional-three-dimensional lead halide per-ovskite with inorganic sodium Ions as a spacer for high-performance light-emitting diodess[ J]. ACS Nano, 2019, 13(2): 1645-1654.
[75] Meng F, Liu X, Cai X, et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method[J]. Nanoscale, 2019, 11 (3): 1295-1303.
[76] Ke Y, Wang N, Kong D, et al. Defect passivation for red perovskite light-emitting diodeswith im-proved brightness and stability[J]. The journal of physical chemistry letters, 2019, 10: 380-385.
[77] Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364): 745-750.
[78] Kirchartz T, Markvart T, Rau U, et al. Impact of small phonon energies on the charge-carrier life-times in metal-halide perovskites [ J]. The journal of physical chemistry letters, 2018, 9 ( 5 ):939-946.
[79] Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345): 1376-1379.
[80] Braly I L, deQuilettes D W, Pazos-Outón L M, et al. Hybrid perovskite films approaching the radia-tive limit with over 90% photoluminescence quantum efficiency[ J]. Nature Photonics, 2018, 12 (6): 355-361.
[81 ] Yang X, Zhang X, Deng J, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation[J]. Nature Com-munications, 2018, 9(1): 570.
[82] De Quilettes D W, Koch S, Burke S, et al. Photoluminescence lifetimes exceeding 8 μs and quan-tum yields exceeding 30% in hybrid perovskite thin films by ligand passivation[J]. ACS Energy Let-ters, 2016, 1(2): 438-444.
[83] Sadaf S M, Ra Y H, Nguyen H P T, et al. Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes[J]. Nano letters, 2015, 15(10): 6696-6701.
[84] Brenes R, Eames C, Bulovic V, et al. The impact of atmosphere on the local luminescence proper-ties of metal halide perovskite grains[J]. Advanced Materials, 2018, 30(15): 1706208.
[85] Weidman M C, Seitz M, Stranks S D, et al. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition[J]. ACS Nano, 2016, 10(8): 7830-7839.
[86 ] Tvingstedt K, Malinkiewicz O, Baumann A, et al. Radiative efficiency of lead iodide based perovskite solar cells[J]. Science Reports, 2014, 4: 6071.
[87] Chen C, Gao L, Gao W, et al. Circularly polarized light detection using chiral hybridperovskite[J]. Nature Communications, 2019, 10: 1927.
[88] Wolff C M, Zu F, Paulke A, et al. Reduced interface-mediated recombination for high open-circuit voltages in CH3 NH3 PbI3 solar cells[J]. Advanced Materials, 2017, 29(28): 1700159.
[89] Zhang L, Yang X, Jiang Q, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes[J]. Nature Communications, 2017, 8: 15640.
[90] Wang J, Wang N, Jin Y, et al. Interfacial control toward efficient and low-voltage perovskite light-e-mitting diodes[J]. Advanced Materials, 2015, 27(14): 2311-2316.
[91] Lee S, Park J H, Lee B R, et al. Amine-based passivating materials for enhanced optical properties and performance of organic-inorganic perovskites in light-emitting diodes[J]. The Journal of Physical Chemistry Letters, 2017, 8(8): 1784-1792.
[92] Wu C Y, Wang Z, Liang L, et al. Graphene-assisted growth of patterned perovskite films for sensi-tive light detector and optical image sensor application[J]. Small, 2019, 15(19): 1900730.
[93] Hoye R L, Chua M R, Musselman K P, et al. Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors [J]. Advanced Materials, 2015, 27(8): 1414-1419.
[94] Hoye R L, Munoz-Rojas D, Musselman K P, et al. Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition[J]. ACS Applied Materi-als&Interfaces, 2015, 7(20): 10684-10694.
[95] Kim Y H, Cho H, Heo J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes[J]. Advanced Materials, 2015, 27(7): 1248-1254.
[96] Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 2016, 28(32): 6804-6834.
[97] Kim Y H, Cho H, Lee T W. Metal halide perovskite light emitters[ J]. PNAS, 2016, 113(42):11694-11702.
[98] Hoye R L Z, Schulz P, Schelhas L T, et al. Perovskite-inspired photovoltaic materials: Toward best practices in materials characterization and calculations[J]. Chemistry of Materials, 2017, 29(5):1964-1988.
[99] Brown T M, Kim J S, Friend R H, et al. Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3, 4-ethylene-dioxythiophene) hole injection layer [J]. Applied Physics Letters, 1999, 75(12): 1679-1681.
[100] Ziffer M E, Mohammed J C, Ginger D S. Electroabsorption spectroscopy measurements of the excit-on binding energy, electron-hole reduced effective mass, and band gap in the perovskite CH3 NH3 PbI3 [J]. ACS Photonics, 2016, 3(6): 1060-1068.
[ 101 ] Amerling E, Baniya S, Lafalce E, et al. Electroabsorption spectroscopy studies of (C4 H9 NH3 )2 PbI4 organic-inorganic hybrid perovskite multiple quantum wells[ J]. The journal of physical chemistry letters, 2017, 8(18): 4557-4564.
[102] Campbell I H, Hagler T W, Smith D L, et al. Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures[ J]. Physical Review Letters, 1996, 76 (11): 1900.
[103] Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3 )[J]. Advanced Materials, 2015, 27(44): 7162-7167.
[104] Lu M, Zhang X, Zhang Y, et al. Simultaneous strontium doping and chlorine surface passivation im-prove luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting de-vices[J]. Advanced Materials, 2018, 30(50): 1804691.
[105] Song J, Fang T, Li J, et al. Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16. 48% [J]. Advanced Materials, 2018, 30(50): 1805409.
[106] Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium i-odine salts for highly efficient light-emitting devices [ J]. Nature Photonics, 2018, 12 ( 11 ):681-687.
[107] Hou S, Gangishetty M K, Quan Q, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping[J]. Joule, 2018, 2(11): 2421-2433.
[108] Zhu L, Cao H, Xue C, et al. Unveiling the additive-assisted oriented growth of perovskite crystal-lite for high performance light-emitting diodes[J]. Nature Communications, 2021, 12(1): 5081.
[109] Liu Z, Qiu W, Peng X, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation[ J]. Advanced Materials, 2021, 33(43): 2103268.
[110] Shen Y, Wu H Y, Li Y Q, et al. Interfacial nucleation seeding for electroluminescent manipulation in blue perovskite light-emitting diodes [ J ]. Advanced Functional Materials, 2021, 31 (45): 2103870.
[111] Wang Y K, Yuan F L, Dong Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabi-lized alpha-CsPbI3 perovskite [ J]. Angewandte Chemie-International Edition, 2021, 60 ( 29 ):16164-16170.
- 煤質(zhì)分析實(shí)訓(xùn)
- 高濃度洗煤廢水處理技術(shù)
- 礦山運(yùn)輸與提升設(shè)備
- 礦井提升系統(tǒng)數(shù)值仿真技術(shù)
- 鈣鈦礦發(fā)光材料與器件
- 復(fù)雜環(huán)境下富水軟弱地層地鐵聯(lián)絡(luò)線施工關(guān)鍵技術(shù)
- 選礦企業(yè)節(jié)能減排技術(shù)
- 煤層氣AVO技術(shù)
- 綠色礦山智慧礦山研究:寧夏回族自治區(qū)煤炭學(xué)會(huì)
- 玄武巖纖維材料
- 利用紅土鎳礦冶煉鎳鐵合金及不銹鋼
- 低階煤分質(zhì)利用
- 煤礦長(zhǎng)距離斜井盾構(gòu)原位地下拆解及配套技術(shù)
- 礦山工程機(jī)械
- 空間信息技術(shù)在礦區(qū)可持續(xù)開(kāi)發(fā)與管理中的應(yīng)用研究