- 機器學(xué)習(xí)
- 周志華
- 781字
- 2024-12-27 23:26:57
參考文獻
陸汝鈐.(1996).人工智能(下冊).科學(xué)出版社,北京。
周志華.(2007).“機器學(xué)習(xí)與數(shù)據(jù)挖掘.”中國計算機學(xué)會通訊,3(12):35–44。
李航.(2012).統(tǒng)計學(xué)習(xí)方法.清華大學(xué)出版社,北京。
Alpaydin, E. (2004). Introduction to Machine Learning. MIT Press, Cambridge, MA.
Asmis, E. (1984). Epicurus' Scientific Method. Cornell University Press, Ithaca, NY.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York, NY.
Blumer, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. (1996). “Occam's razor.” Information Processing Letters, 24(6):377–380.
Carbonell, J. G., ed. (1990). Machine Learning:Paradigms and Methods. MIT Press, Cambridge, MA.
Cohen, P. R. and E. A. Feigenbaum, eds. (1983). The Handbook of Artificial Intelligence, volume 3. William Kaufmann, New York, NY.
Dietterich, T. G. (1997). “Machine learning research:Four current directions.” AI Magazine, 18(4):97–136.
Domingos, P. (1999). “The role of Occam’s razor in knowledge discovery.” Data Mining and Knowledge Discovery, 3(4):409–425.
Duda, R. O., P. E. Hart, and D. G. Stork. (2001). Pattern Classification, 2nd edition. John Wiley & Sons, New York, NY.
Flach, P. (2012). Machine Learning:The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, Cambridge, UK.
Hand, D., H. Mannila, and P. Smyth. (2001). Principles of Data Mining. MIT Press, Cambridge, MA.
Hastie, T., R. Tibshirani, and J. Friedman. (2009). The Elements of Statistical Learning, 2nd edition. Springer, New York, NY.
Hunt, E. G. and D. I. Hovland. (1963). “Programming a model of human concept formation.” In Computers and Thought (E. Feigenbaum and J. Feldman, eds.), 310–325, McGraw Hill, New York, NY.
Kanerva, P. (1988). Sparse Distributed Memory. MIT Press, Cambridge, MA.
Michalski, R. S., J. G. Carbonell, and T. M. Mitchell, eds. (1983). Machine Learning:An Artificial Intelligence Approach. Tioga, Palo Alto, CA.
Mitchell, T. (1997). Machine Learning. McGraw Hill, New York, NY.
Mitchell, T. M. (1977). “Version spaces:A candidate elimination approach to rule learning.” In Proceedings of the 5th International Joint Conference on Artificial Intelligence (IJCAI), 305–310, Cambridge, MA.
Mjolsness, E. and D. DeCoste. (2001). “Machine learning for science:State of the art and future prospects.” Science, 293(5537):2051–2055.
Pan, S. J. and Q. Yang. (2010). “A survey of transfer learning.” IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359.
Shalev-Shwartz, S. and S. Ben-David. (2014). Understanding Machine Learning. Cambridge University Press, Cambridge, UK.
Simon, H. A. and G. Lea. (1974). “Problem solving and rule induction:A unified view.” In Knowledge and Cognition (L. W. Gregg, ed.), 105–127, Erlbaum, New York, NY.
Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York, NY.
Webb, G. I. (1996). “Further experimental evidence against the utility of Occam’s razor.” Journal of Artificial Intelligence Research, 43:397–417.
Winston, P. H. (1970). “Learning structural descriptions from examples.” Technical Report AI-TR-231, AI Lab, MIT, Cambridge, MA.
Witten, I. H., E. Frank, and M. A. Hall. (2011). Data Mining:Practical Machine Learing Tools and Techniques, 3rd edition. Elsevier, Burlington, MA.
Wolpert, D. H. (1996). “The lack of a priori distinctions between learning algorithms.” Neural Computation, 8(7):1341–1390.
Wolpert, D. H. and W. G. Macready. (1995). “No free lunch theorems for search.” Technical Report SFI-TR-05-010, Santa Fe Institute, Sante Fe, NM.
Zhou, Z.-H. (2003). “Three perspectives of data mining.” Artificial Intelligence, 143(1):139–146.
- 智能機器的未來
- AIGC:讓生成式AI成為自己的外腦
- AI辦公高手速成:工具與提效技巧大全
- ChatGPT原理與實戰(zhàn):大型語言模型的算法、技術(shù)和私有化
- 從深度學(xué)習(xí)到圖神經(jīng)網(wǎng)絡(luò):模型與實踐
- 風(fēng)向:如何應(yīng)對互聯(lián)網(wǎng)變革下的知識焦慮、不確定與個人成長
- TensorFlow移動端機器學(xué)習(xí)實戰(zhàn)
- 創(chuàng)造性思維:人工智能之父馬文·明斯基論教育
- 破解深度學(xué)習(xí)(基礎(chǔ)篇):模型算法與實現(xiàn)
- 人工智能初探2
- 大模型工程化:AI驅(qū)動下的數(shù)據(jù)體系
- 會話式AI:自然語言處理與人機交互
- 虛擬現(xiàn)實:另一個宜居的未來
- AI效率手冊:從ChatGPT開啟高效能
- AI助理:用ChatGPT輕松搞定工作