官术网_书友最值得收藏!

參考文獻

[1] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. nature, 2015, 521(7553): 436.

[2] WANG T Q, et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels [J]. IEEE Wireless Communications Letters, 2018,8(2): 416-419.

[3] WEN C K, SHIH W T, JIN S. Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018,7(5):748-751.

[4] CAI Q Y, DONG C, NIUK Attention model for massive MIMO CSI compression feedback and recovery: 2019 IEEE Wireless Communications and Networking Conference (WCNC)[C]. New York:IEEE, 2019.

[5] LIAO Y, et al. ChanEstNet: A deep learning based channel estimation for high-speed scenarios: ICC 2019-2019 IEEE international conference on communications (ICC) [C]. New York:IEEE, 2019.

[6] SAMUEL N,DISKIN T, WIESEL A. Learning to detect [J]. IEEE Transactions on Signal Processing,2019,67(10):2554-2564.

[7] GUO J J, et al. Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis [J]. IEEE Transactions on Wireless Communications ,2020,19(4): 2827-2840.

[8] LIN B, et al. A novel OFDM autoencoder featuring CNN-based channel estimation for internet of vessels[J]. IEEE Internet of Things Journal, 2020, 7(8): 7601-7611.

[9] MASHHADI M B,GüNDüZ D. Pruning the pilots: Deep learning-based pilot design and channel estimation for MIMO-OFDM systems [J]. IEEE Transactions on Wireless Communications ,2021,20(10): 6315-6328.

[10] SARADHI P P, PANDYA R J, IYER S, et al. Deep Learning Oriented Channel Estima- tion for Interference Reduction for 5G:2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES) [C]. New York: IEEE, 2021.

主站蜘蛛池模板: 汉川市| 桐梓县| 延吉市| 西贡区| 义乌市| 齐河县| 溆浦县| 古田县| 淳安县| 莱州市| 合川市| 恩施市| 滁州市| 蕉岭县| 东平县| 鸡东县| 万年县| 林口县| 峨眉山市| 扶风县| 屏山县| 锡林郭勒盟| 东港市| 兴化市| 同德县| 上林县| 方山县| 大埔县| 阿克陶县| 都江堰市| 黑山县| 怀化市| 精河县| 孙吴县| 德州市| 黄梅县| 长沙县| 遵义县| 桦南县| 焦作市| 镇平县|