官术网_书友最值得收藏!

4.5 推動(dòng)我國(guó)人工肺中空纖維交換膜材料產(chǎn)業(yè)發(fā)展的對(duì)策和建議

目前在國(guó)內(nèi)注冊(cè)醫(yī)療器械生產(chǎn)人工肺的國(guó)際企業(yè)有5家,進(jìn)口企業(yè)有25家。ECMO的應(yīng)用從2003年的“非典”之后急劇增加,使用技術(shù)從三甲醫(yī)院擴(kuò)散至地方醫(yī)院。現(xiàn)在急需一種性能更好、價(jià)格更便宜的膜肺來降低醫(yī)療價(jià)格,提升治愈率,而不是等待國(guó)外技術(shù)的擴(kuò)散。目前國(guó)內(nèi)外多采用熱致相分離法生產(chǎn)聚烯烴中空纖維膜作為膜肺,由于其原理限制,導(dǎo)致生產(chǎn)速度慢,溶劑部分原料回收困難,包含固液加熱共混后續(xù)萃取等工藝,較為復(fù)雜。針對(duì)現(xiàn)在技術(shù)壁壘和專利的圍墻,我們可以在目前得到的新原料中尋找功能更為優(yōu)越的新材料,作為替代,進(jìn)行有針對(duì)性的研發(fā);針對(duì)目前成型工藝以及原理存在的缺陷,進(jìn)行工藝創(chuàng)新,以加工方式的革新,創(chuàng)造新的體系,越過國(guó)外壁壘的同時(shí),促進(jìn)國(guó)內(nèi)的發(fā)展,以點(diǎn)帶面,促進(jìn)一系列產(chǎn)業(yè)的發(fā)展。

ECMO在重大疫情中能夠發(fā)揮關(guān)鍵作用,是國(guó)家公共衛(wèi)生安全中的重要一環(huán),對(duì)此我們有關(guān)于產(chǎn)業(yè)和人才兩方面的建議:

① 應(yīng)加緊研制國(guó)產(chǎn)ECMO膜,通過設(shè)立重大科研項(xiàng)目、組織科研攻關(guān)團(tuán)隊(duì)等,走產(chǎn)業(yè)聯(lián)盟途徑,產(chǎn)業(yè)鏈各環(huán)節(jié)廠家聯(lián)合進(jìn)行開發(fā),加速國(guó)產(chǎn)ECMO膜落地。同時(shí),我國(guó)應(yīng)加強(qiáng)對(duì)新材料、精細(xì)化工和元器件等關(guān)鍵核心技術(shù)的支持力度,從“源頭”上促進(jìn)醫(yī)療裝備產(chǎn)業(yè)發(fā)展。通過精準(zhǔn)扶持,加速ECMO膜紡絲設(shè)備國(guó)產(chǎn)替代進(jìn)程。在ECMO膜設(shè)備國(guó)產(chǎn)替代過程中,我國(guó)應(yīng)對(duì)掌握關(guān)鍵核心技術(shù)的企業(yè)從科研、生產(chǎn)到應(yīng)用等環(huán)節(jié)進(jìn)行精準(zhǔn)扶持,政策與金融支持推進(jìn)ECMO膜國(guó)產(chǎn)化進(jìn)程,助力ECMO國(guó)產(chǎn)設(shè)備加速落地。

② 一個(gè)產(chǎn)業(yè)要想不斷地向前發(fā)展,就需要不斷地創(chuàng)新。人工膜肺及其組件不斷地發(fā)展創(chuàng)新表現(xiàn)在“表面涂層”“血液濾過”和“小型化”方面,而人才的培養(yǎng)顯得尤為重要。在工程應(yīng)用型的專業(yè)人才培養(yǎng)的主要目的是為了更好地滿足當(dāng)前行業(yè)發(fā)展的需求。因此在培訓(xùn)中,一定要以基層、生產(chǎn)線為原則,在提升通識(shí)教育的前提下,增強(qiáng)學(xué)生綜合素質(zhì)的培養(yǎng),動(dòng)手能力以及實(shí)踐能力的培養(yǎng)。除了完善校內(nèi)工程實(shí)訓(xùn)條件之外,還要增強(qiáng)校企學(xué)研基地的建設(shè),以此來彌補(bǔ)校內(nèi)實(shí)訓(xùn)的不足,從而使學(xué)生學(xué)習(xí)以及實(shí)踐得到更好的完善。

相信在眾多醫(yī)療機(jī)構(gòu)和高校等研究機(jī)構(gòu)的協(xié)同合作下,ECMO人工肺中空纖維交換膜核心材料必將會(huì)完成自主研發(fā),國(guó)產(chǎn)自主研發(fā)ECMO設(shè)備也將在不久的將來誕生,具有更高的安全性和有效性,并能更好地為我國(guó)及其他國(guó)家有需要的病患者服務(wù)。

參考文獻(xiàn)

[1] 宮美慧, 蔣樹林, 李詠梅, 等.人工膜肺氧合器臨床應(yīng)用研究及發(fā)展趨勢(shì)[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2015, 15(21): 4186-4190.

[2] 黑飛龍, 龍村, 于坤.體外膜肺氧合并發(fā)癥研究[J].中國(guó)體外循環(huán)雜志, 2005(04): 243-245.

[3] Madhani S P, May A G, Frankowski B J, et al. Blood Recirculation Enhances Oxygenation Efficiency of Artificial Lungs[J]. Asaio Journal, 2020, 66(5): 565-570.

[4] Raffaeli G, Pokorna P, Ailegaert K, et al. Drug Disposition and Pharmacotherapy in Neonatal ECMO: From Fragmented Data to Integrated Knowledge[J]. Frontiers in Pediatrics, 2019, 7.

[5] 潘紅, 黃琴紅, 蔡英華, 等.13例體外膜肺氧合治療危重患者院內(nèi)轉(zhuǎn)運(yùn)的護(hù)理[J].中華護(hù)理雜志, 2017, 52(05): 561-563.

[6] Daniel J M, Bernard P A, Skinner S C, et al. Hollow Fiber Oxygenator Composition Has a Significant Impact on Failure Rates in Neonates on Extracorporeal Membrane Oxygenation: A Retrospective Analysis[J]. Journal of Pediatric Intensive Care, 2018, 7 (1): 7-13.

[7] 陳虹, 吳前勝, 陳麗, 等. ECMO聯(lián)合CRRT救治危重型新型冠狀病毒肺炎患者3例的護(hù)理[J].中西醫(yī)結(jié)合護(hù)理(中英文), 2020, 6(04): 182-186.

[8] 梅早仙, 孫昕, 吳琦.人工肺的現(xiàn)狀和發(fā)展[J].生物醫(yī)學(xué)工程學(xué)雜志, 2010, 27(06): 1410-1414.

[9] 劉東, 王盛宇, 孫凌波, 等. ECMO的臨床應(yīng)用[J].北京生物醫(yī)學(xué)工程, 2008(03): 305-308+327.

[10] Sauer C M, Yuh D D , Bonde P. Extracorporeal Membrane Oxygenation Use Has Increased by 433% in Adults in the United States from 2006 to 2011[J]. ASAIO Journal, 2015: 31-36.

[11] Ann Arbor, MI. ELSO Guidelines for ECMO Centers[M]. Extracorporeal Life Support Organization (ELSO), 2010.

[12] 丁海濤.習(xí)近平在北京考察新冠肺炎防控科研攻關(guān)工作[J].中國(guó)發(fā)展觀察, 2020(Z3).

[13] Stamatialis D F, Papenburg B J, Girones M, et al. Medical Applications of Membranes: Drug Delivery, Artificial Organs and Tissue Engineering[J]. Journal of Membrane Science, 2008, 308 (1-2): 1-34.

[14] Iwahashi H, Yuri K, Nosé Y. Development of the Oxygenator: Past, Present, and Future[J]. Journal of Artificial Organs, 2004, 7(3): 111-120.

[15] Robb W L. Thin Silicone Membranes--Their Permeation Properties and Some Applications[J]. Annals of the New York Academy of Sciences, 1968, 146 (1): 119-137.

[16] Yasuda H, Lamaze C E. Transfer of Gas to Dissolved Oxygen in Water via Porous and Nonporous Polymer Membranes[J]. Journal of Applied Polymer Science, 1972, 16 (3): 595-601.

[17] Kolobow T, Spragg R G, Pierce J E, et al.Extended Term (to 16 Days) Partial Extracorporeal Blood Gas Exchange with the Spiral Membrane Lung in Unanesthetized Lambs[J]. Transactions-American Society for Artificial Internal Organs, 1971, 17: 350-354.

[18] Abada E N, Feinberg B J, Roy S. Evaluation of Silicon Membranes for Extracorporeal Membrane Oxygenation (ECMO)[J]. Biomedical Microdevices, 2018, 20 (4).

[19] Motomura T, Maeda T, Kawahito S, et al. Extracorporeal Membrane Oxygenator Compatible with Centrifugal Blood Pumps[J]. Artificial Organs, 2002, 26(11): 952-958.

[20] Schumer E, Hoffler K, Kuehn C, et al. In-vitro Evaluation of Limitations and Possibilities for the Future Use of Intracorporeal Gas Exchangers Placed in the Upper Lobe Position[J]. Journal of Artificial Organs, 2018, 21 (1): 68-75.

[21] Yeager T, Roy S. Evolution of Gas Permeable Membranes for Extracorporeal Membrane Oxygenation[J]. Artificial Organs, 2017, 41 (8): 700-709.

[22] Lin F C, Wang D M, Lai J Y. Asymmetric TPX Membranes with High Gas Flux[J]. Journal of Membrane Science, 1996, 110 (1): 25-36.

[23] Müller M O, Kessler E, Hornscheidt R R, et al. Integrally Asymmetrical Polyolefin Membrane for Gas Exchange[P]. US6409921B1, 2002.

[24] Madhani S P, Frankowski B J, Federspiel W J. Fiber Bundle Design for an Integrated Wearable Artificial Lung[J]. Asaio Journal, 2017, 63 (5): 631-636.

[25] Wickramasinghe S R, Garcia J D, Han B B. Mass and Momentum Transfer in Hollow Fibre Blood Oxygenators[J]. Journal of Membrane Science, 2002, 208 (1-2): 247-256.

[26] Ahmed T, Semmens M J. Use of Sealed Hollow Fibers for Bubbleless Membrane Aeration-Experimental Studies [J]. Journal of Membrane Science, 1992, 69 (1-2): 1-10.

[27] Ahmed T, Semmens M J. The Use of Independently Sealed Microporous Hollow Fiber Membranes for Oxygenation of Water-Model Development[J]. Journal of Membrane Science, 1992, 69 (1-2): 11-20.

[28] Moulin P, Rouch J C, Serra C, et al. Mass Transfer Improvement by Secondary Flows: Dean Vortices in Coiled Tubular Membranes[J]. Journal of Membrane Science, 1996, 114 (2): 235-244.

[29] Matsuda N, Sakai K. Blood Flow and Oxygen Transfer Rate of an Outside Blood Flow Membrane Oxygenator[J]. Journal of Membrane Science, 2000, 170 (2): 153-158.

[30] Catapano G, Papenfuss H D, Wodetzki A, et al. Mass and Momentum Transport in Extra-luminal Flow (ELF) Membrane Devices for Blood Oxygenation[J]. Journal of Membrane Science, 2001, 184 (1): 123-135.

[31] Catapano G, Hornscheidt R, Wodetzki A, et al. Turbulent Flow Technique for the Estimation of Oxygen Diffusive Permeability of Membranes for the Oxygenation of Blood and Other Cell Suspensions[J]. Journal of Membrane Science, 2004, 230 (1-2): 131-139.

[32] Gerling K, Olschlager S, Avci-Adali M, et al. A Novel C1-Esterase Inhibitor Oxygenator Coating Prevents FXII Activation in Human Blood[J]. Biomolecules, 2020, 10 (7).

[33] Sreenivasan R, Bassett E K, Hoganson D M, et al. Ultra-thin, Gas Permeable Free-standing and Composite Membranes for Microfluidic Lung Assist Devices[J]. Biomaterials, 2011, 32 (16): 3883-3889.

[34] Hess C, Wiegmann B, Maurer A N, et al. Reduced Thrombocyte Adhesion to Endothelialized Poly 4-Methyl-1-Pentene Gas Exchange Membranes-A First Step Toward Bioartificial Lung Development[J]. Tissue Engineering Part A, 2010, 16 (10): 3043-3053.

[35] Kaar J L, Oh H I, Russell A J, et al. Towards Improved Artificial Lungs Through Biocatalysis[J]. Biomaterials, 2007, 28 (20): 3131-3139.

[36] Kimmel J D, Arazawa D T, Ye S H, et al. Carbonic Anhydrase Immobilized on Hollow Fiber Membranes Using Glutaraldehyde Activated Chitosan for Artificial Lung Applications[J]. Journal of Materials Science-Materials in Medicine, 2013, 24 (11): 2611-2621.

[37] Potkay J A. The Promise of Microfluidic Artificial Lungs[J]. Lab on a Chip, 2014, 14 (21): 4122-4138.

[38] Jani J M, Wessling M, Lammertink R G H. Geometrical Influence on Mixing in Helical Porous Membrane Microcontactors[J]. Journal of Membrane Science, 2011, 378 (1-2): 351-358.

[39] Femmer T, Kuehne A J C, Torres-Rendon J, et al. Print your Membrane: Rapid Prototyping of Complex 3D-PDMS Membranes via a Sacrificial Resist[J]. Journal of Membrane Science, 2015, 478: 12-18.

[40] Hoganson D M, Pryor H I, Bassett E K, et al. Lung Assist Device Technology with Physiologic Blood Flow Developed on a Tissue Engineered Scaffold Platform[J]. Lab on a Chip, 2011, 11 (4): 700-707.

[41] Kniazeva T, Epshteyn A A, Hsiao J C, et al. Performance and Scaling Effects in a Multilayer Microfluidic Extracorporeal Lung Oxygenation Device[J]. Lab on a Chip, 2012, 12 (9): 1686-1695.

[42] Gimbel A A, Flores E, Koo A, et al. Development of a Biomimetic Microfluidic Oxygen Transfer Device[J]. Lab on a Chip, 2016, 16 (17): 3227-3234.

[43] Wu W I, Rochow N, Chan E, et al. Lung Assist Device: Development of Microfluidic Oxygenators for Preterm Infants with Respiratory Failure[J]. Lab on a Chip, 2013, 13 (13): 2641-2650.

[44]何春菊, 孫俊芬, 吳光香, 等.改性PAN中空纖維原絲的研制[J].東華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006(01): 11-14.

[45] 朱思君, 段友容, 梅勇, 等.聚醚砜中空纖維膜的制備[J].合成纖維工業(yè), 2005(03): 22-24.

[46] Wang J, Liu L, Qu Z, et al. Outstanding Antifouling Performance of Poly(vinylidene fluoride) Membranes: Novel Amphiphilic Brushlike Copolymer Blends and One-step Surface Zwitterionization[J]. Journal of Applied Polymer Science, 2019, 136 (24).

[47] Qiu Z, Ji X, He C. Fabrication of a Loose Nanofiltration Candidate from Polyacrylonitrile/Graphene Oxide Hybrid Membrane via Thermally Induced Phase Separation[J]. Journal of Hazardous Materials, 2018, 360: 122-131.

[48] 王慶瑞, 陳雪英, 何春菊.高分子膜材料及人工臟器[J].膜科學(xué)與技術(shù), 2003(04): 151-155.

[49] 孫俊芬, 王慶瑞.新型膜式人工臟器的研究進(jìn)展[J].產(chǎn)業(yè)用紡織品, 2001(08): 9-13.

[50] 龐嬿婉, 陶錚, 張輝, 等.交叉流微孔聚丙烯中空纖維膜式氧合器研究[J].復(fù)旦學(xué)報(bào)(自然科學(xué)版), 2001(4): 381-386.

[51] Wang Y B, Gong M, Yang S, et al. Hemocompatibility and Film Stability Improvement of Crosslinkable MPC Copolymer Coated Polypropylene Hollow Fiber Membrane[J]. Journal of Membrane Science, 2014, 452: 29-36.

[52] 饒華新.新型中空纖維膜式人工肺的設(shè)計(jì)與研究[D].廣州: 暨南大學(xué), 2008.

[53] 趙肖.中空纖維膜的層層自組裝制備及其在膜式氧合器中的應(yīng)用研究[D].廣州: 暨南大學(xué), 2016.

[54] 黃鑫.熱致相分離法制備聚4-甲基-1-戊烯中空纖維膜及其表面血液相容性改性[D].南京: 南京大學(xué), 2016.

[55] Huang X, Wang W P, Zheng Z, et al. Surface Monofunctionalized Polymethyl Pentene Hollow Fiber Membranes by Plasma Treatment and Hemocompatibility Modification for Membrane Oxygenators[J]. Applied Surface Science, 2016, 362: 355-363.

[56] 葉非華, 易國(guó)斌.可交聯(lián)磷酰膽堿聚合物改性聚甲基戊烯中空纖維膜[J].復(fù)合材料學(xué)報(bào), 2021: 38.

[57] 王琴梅, 張滌華, 廖艷紅, 等.聚甲基戊烯膜式氧合器表面碳酸酐酶的固定化及性能研究[J].化學(xué)通報(bào), 2009, 72(6): 549-553.

[58] 許少波, 王建華.中空纖維膜式氧合器的研究進(jìn)展[J]. 學(xué)科前沿, 2006(10): 4-7.

[59] Aksoy A E, Hasirci V, Hasirci N. Surface Modification of Polyurethanes with Covalent Immobilization of Heparin[C]//Macromolecular Symposia. WILEY-VCH Verlag, 2008, 269(1): 145-153.

[60] Tashiro M, Okamoto T, Sakanashi Y, et al. Experimental Evaluation of the V-point Heparinbonding System Applied to a Densemembrane Artificial Lung during 24hour Extracorporeal Circulation in Beagles[J]. Artificial Organs, 2001, 25(8): 655-663.

[61] 王風(fēng)婷, 羅峰.膜式氧合器中膜材料的研究進(jìn)展[J].中國(guó)組織工程研究與臨床康復(fù), 2008, 12(10): 1927-1930.

[62] Reng M, Philipp A, Kaiser M, et al. Pumpless Extracorporeal Lung Assist and Adult Respiratory Distress Syndrome[J]. The Lancet, 2000, 356(9225): 219-220.

[63] Nishinaka T, Tatsumi E, Taenaka Y, et al. At Least Thirty-four Days of Animal Continuous Perfusion by a Newly Developed Extracorporeal Membrane Oxygenation System without Systemic Anticoagulants[J]. Artificial Organs, 2002, 26(6): 548-551.

朱美芳,教授,中國(guó)科學(xué)院院士,東華大學(xué)材料科學(xué)與工程學(xué)院院長(zhǎng),纖維材料改性國(guó)家重點(diǎn)實(shí)驗(yàn)室主任,中國(guó)材料研究學(xué)會(huì)副理事長(zhǎng)及纖維材料改性與復(fù)合技術(shù)分會(huì)理事會(huì)主任、中國(guó)女科技工作者協(xié)會(huì)第四屆理事會(huì)副會(huì)長(zhǎng)、國(guó)家重點(diǎn)研發(fā)計(jì)劃“重點(diǎn)基礎(chǔ)材料技術(shù)提升與產(chǎn)業(yè)化”重點(diǎn)專項(xiàng)總體專家組專家、第七屆國(guó)務(wù)院學(xué)位委員會(huì)材料科學(xué)與工程學(xué)科評(píng)議組成員、2018—2022教育部高等學(xué)校材料類專業(yè)教學(xué)指導(dǎo)委員會(huì)副主任委員、中國(guó)化學(xué)會(huì)高分子學(xué)科委員會(huì)副主任委員。主要從事纖維材料功能化、舒適化和智能化領(lǐng)域的研究,取得了系統(tǒng)性和創(chuàng)造性成果。先后主持國(guó)家重點(diǎn)研發(fā)計(jì)劃、國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目等國(guó)家及省部級(jí)科研任務(wù)30余項(xiàng);發(fā)表SCI論文350余篇,出版著作10部(章);獲授權(quán)中國(guó)發(fā)明專利180余件、PCT6件;以第一完成人獲國(guó)家科技進(jìn)步二等獎(jiǎng)、上海市自然科學(xué)一等獎(jiǎng)、上海市技術(shù)發(fā)明一等獎(jiǎng)等10余項(xiàng)。

何春菊,東華大學(xué)材料科學(xué)與工程學(xué)院教授,博士生導(dǎo)師,教育部新世紀(jì)優(yōu)秀人才、上海市浦江學(xué)者,纖維材料改性國(guó)家重點(diǎn)實(shí)驗(yàn)室固定成員。主要研究方向?yàn)橹锌绽w維膜人工臟器、功能膜材料的研制及應(yīng)用。先后參與國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)重大計(jì)劃、科技支撐計(jì)劃、主持國(guó)家自然科學(xué)基金面上項(xiàng)目、青年基金項(xiàng)目等國(guó)家及省部級(jí)科研任務(wù)30余項(xiàng);以第一作者發(fā)表SCI論文70余篇,出版著作3部(章);獲授權(quán)中國(guó)發(fā)明專利40余件;獲香港桑麻基金會(huì)桑麻紡織科技一等獎(jiǎng)、上海市科技進(jìn)步二等獎(jiǎng)、福建省科技進(jìn)步二等獎(jiǎng)等5項(xiàng)。

孟哲一,東華大學(xué)材料科學(xué)與工程學(xué)院副研究員,主要從事仿生膜材料研究。2016年畢業(yè)于北京航空航天大學(xué)材料物理與化學(xué)專業(yè),獲工學(xué)博士學(xué)位,之后在英國(guó)倫敦大學(xué)學(xué)院化學(xué)工程系從事博士后研究,2019年入職東華大學(xué)。至今共發(fā)表SCI論文13篇,以第一作者身份發(fā)表Adv. Mater. 1篇,ACS Appl. Mater. Intefaces 兩篇。主持國(guó)家自然科學(xué)基金青年基金項(xiàng)目一項(xiàng),參與過國(guó)內(nèi)自然科學(xué)基金面上項(xiàng)目?jī)身?xiàng)、973課題兩項(xiàng)、英國(guó)EPSRC基金項(xiàng)目一項(xiàng)。

主站蜘蛛池模板: 贡嘎县| 莲花县| 甘肃省| 静乐县| 永安市| 孙吴县| 娄烦县| 新丰县| 辉县市| 巴彦县| 房山区| 江油市| 星子县| 临夏市| 泰和县| 芜湖市| 清水县| 万载县| 祁连县| 惠东县| 车险| 九江县| 兴宁市| 鲁甸县| 商南县| 密云县| 探索| 出国| 睢宁县| 准格尔旗| 长沙县| 临江市| 垦利县| 华宁县| 普陀区| 凤阳县| 阿尔山市| 塔河县| 镇宁| 尼勒克县| 浙江省|